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Abstract. A body of psychological research has examined the corre-
spondence between a judge’s subjective probability of an event’s out-
come and the event’s actual outcome. The research generally shows that
subjective probabilities are noisy and do not match the “true” proba-
bilities. However, subjective probabilities are still useful for forecasting
purposes if they bear some relationship to true probabilities. The pur-
pose of the current research is to exploit relationships between subjective
probabilities and outcomes to create improved, model-based probabili-
ties for forecasting. Once the model has been trained in situations where
the outcome is known, it can then be used in forecasting situations where
the outcome is unknown. These concepts are demonstrated using exper-
imental psychology data, and potential applications are discussed.
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1 Introduction

Subjective probability is commonly used to measure judges’ certainties in deci-
sions and forecasts. People are generally familiar with reporting such probabili-
ties, making them a natural way to gauge certainty in many situations. This has
led to a long line of psychology research devoted to understanding how individ-
uals construct subjective probabilities, where it is often found that subjective
probabilities tend to be larger than the true probabilities of the corresponding
outcomes (e.g., [1-3]).

The intent of this paper is to study the use of a hierarchical logistic model for
improving subjective probabilities. The model transforms individual subjective
probabilities into predicted probabilities of an outcome’s occurrence. Once the
model has been fit to data with known outcomes, the model can be used to trans-
form subjective probabilities and forecast unknown outcomes. A particularly-
interesting aspect of the model is that it yields unique transformations for in-
dividual judges, accounting for individual differences in response styles while
maintaining general trends present in the group of judges.
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The model is related to the vast literature on combining expert judgments
(see, e.g., [4,5]), where the goal is to take many subjective judgments as input
and yield a single, aggregated prediction as output. The current paper differs
from this literature in that it examines how individuals’ subjective probabilities
are related to true probabilities of particular outcomes. Thus, the model in the
current paper may be used to improve individual expert probabilities prior to ag-
gregating the probabilities (an idea advanced by [6]). A special case of the model
may also be used in situations where only a single expert reports a probability.

In the pages below, I first define measures of the correspondence between sub-
jective probabilities and outcomes, along with the measures’ use in applications.
I then define the model that is used to transform subjective probabilities. Next,
I demonstrate the utility of the approach using data from a visual discrimination
experiment. Finally, I describe how the model can be used in applications and
consider other statistical methods that could be relevant.

1.1 Correspondence Between Subjective Probability and Outcomes

Researchers have defined many measures of the correspondence between prob-
abilistic forecasts and outcomes. One of the most intuitive measures is of the
extent to which probabilistic forecasts match the long-term proportion of occur-
ring outcomes. This can be defined mathematically as a measure of bias. Let
d;j € {0,1} be the outcome of event j (j = 1,...,J),! and let f; be a judge’s
subjective probability that d; = 1. For the purposes of this paper, bias is then
defined as:

bias = f — d, (1)

where f is the mean of the f; and d is the mean of the d; (j =1,...,J). Biases
close to zero reflect “good” forecasts, and biases far from zero reflect “bad”
forecasts.

There exist a variety of other measures designed to examine other aspects of
the correspondence between the f; and the d;; see [7]. Two of these measures are
slope and scatter. Slope measures the extent to which forecasts differ for d; = 0
and d; = 1:

slope = f1 — fo, (2)
where f, is average subjective probability for events where d; = 1 and fois
average subjective probability for events where d; = 0. Large slopes reflect good
forecasts, and small slopes reflect bad forecasts.

Scatter reflects noise in the f; that is unrelated to the d;:

(n1 —1)s, + (ng — 1)s%,

scatter =
n1+ng—2

; 3)

L Outcome has multiple meanings. It could refer to whether or not an event occurs,
in which case we have 0=event does not occur, 1=event does occur. Alternatively,
outcome could refer to whether or not a judge’s prediction of an event’s occurrence
matches the event’s actual occurrence. In this case, we have 0=judge’s prediction
was incorrect, 1=judge’s prediction was correct.
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where 5;1 is the variance of the f; for which d; = 1, ny is the number of events
for which d; = 1, and s?co and ng are defined similarly. Small values of scatter
reflect good forecasts, and larger values reflect bad forecasts.

1.2 TUse of the Measures

Decision researchers have tended to focus on the bias measure: bias is generally
intuitive, and observed bias may be immediately compared to the “perfect” bias
value of 0. In a variety of experimental tasks, researchers tend to find biases
greater than zero; that is, judges’ subjective probabilities tend to be larger than
they should [7-10]. This implies that, in applied situations, subjective probabili-
ties are suboptimal for guiding decisions. Less research has focused on measures
other than bias (though see, e.g., [6,11]), which may be because it is generally
impossible for judges to attain perfect values on these other measures. Thus,
it is difficult to say whether a particular value of slope or scatter is good. It is
still possible to compare relative magnitudes of slope and scatter, making them
useful for comparing observed slope and scatter with model-predicted slope and
scatter. These measures are used in the example that follows, but I first describe
the specific model that is used to transform the subjective probabilities.

2 Model

Let 7 index judges and j index forecasts. To transform subjective probabilities,
I consider a hierarchical logistic model with f;; as a predictor variable and d;;
as a response variable. The basic model is given as:

d;j ~ Bernoulli(p;;) (4)
log(pi; /(1 = pij)) = boi + buifij,

where p;; is the probability that judge ¢ is correct on forecast j. This probabil-
ity is modeled using the judge’s subjective probability, fi;, as a predictor. The
slope and intercept in the model vary for each judge i, allowing the relationship
between p and f to differ from judge to judge. The hierarchical formulation of
the model is obtained by assuming a joint normal distribution on the by; and

bu:
boi By [t oo
<b1i) ~ N {(Bl) 0= <001 ai )]’ ®)

where By is the mean of the intercepts, By is the mean of the slopes, and X
is the covariance matrix of the intercepts and slopes. The hierarchical normal
distribution is traditionally used in this model, but a different distribution could
be used if deemed useful or necessary. This flexibility in hierarchical distributions
is an advantage of the Bayesian approach.

There are two other Bayesian advantages that led to the implementation
of a Bayesian model here. First, the Bayesian model allows for incorporation
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of prior knowledge about base rates of correct forecasts or about relationships
between p and f. This could be useful for specific applications. Second, the
Bayesian model allows for calculation of posterior predictive distributions of the
pij. As will be shown below, this allows us to systematically transform judges’
reported probabilities into conservative and/or liberal probabilistic predictions.
To complete the Bayesian model, we require prior distributions on By, Bi, and
the associated covariance matrix ;. These are given as:

By ~ N(po, 53) (6)
By~ N(u,57) (7)
3y ~ Inv-Wishart(df, ), (8)

where X, follows an inverse Wishart distribution with df > 1 and scale matrix
320. These parameters can be set based on prior knowledge about the forecasting
scenario, or they can be set to reflect the absence of prior knowledge. I consider
the latter situation in the following example.

3 Example: Visual Discrimination

To demonstrate the potential applicability of these hierarchical models, I con-
sider data from Experiment 1 of [12]. In this experiment, judges viewed images
of asterisks randomly arranged in a 10 x 10 array. The number of asterisks was
randomly drawn from one of two normal distributions, with the first distribution
being N(45,0 = 5) and the second being N(55,0 = 5). For each of 450 trials,
judges viewed an array and stated a probability that the asterisks arose from the
second distribution. Judges were not told the distributions governing number of
asterisks; they were required to learn the distributions by themselves. Reported
probabilities were required to come from the set {.05,.15,.25,...,.95}. Choices
were inferred from the reported probabilities, and probabilities in the choices
were then obtained (ranging from .55 to .95).

3.1 Model Details

The Bayesian hierarchical model described in the previous section was fit to data
from 36 subjects across 40 experimental trials. The prior distributions on model
parameters were taken to be noninformative:

110 ~ N(1, 1.0E5) (9)
411 ~ N(0, 1.0E5) (10)
¥y ~ Inv-Wishart(2,I), (11)

where I is a 2 x 2 identity matrix. The model was estimated in OpenBugs [13]
via Markov chain Monte Carlo methods, with relevant code appearing in the
appendix. Three chains of parameters were sampled for 14,000 iterations each,
with the first 4,000 iterations being discarded as burn-in.
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OpenBugs was also used to obtain predicted probabilities for all judges across
20 trials that were not used during model fitting. To be specific, OpenBugs was
used to sample from the posterior predictive distributions for these 20 trials.
These distributions can be used to obtain conservative and/or liberal predicted
probabilities. The extent to which this is useful is examined below.

3.2 Results

Results are presented in two parts. First, I make some general remarks about the
fitted model and the probabilistic predictions. I then make detailed comparisons
between the predicted probabilities and judges’ reported probabilities.

Fitted Model Before examining the predicted probabilities, a fundamental
issue involves the extent to which reported probabilities (f;;) are related to
accuracy (d;;). Within the model (Equation (4)), the hierarchical distribution

on the by; informs this issue. This distribution is estimated as N(3.1, 0% = 0.96),
with a 95% posterior interval for the mean being (2.24, 4.09). Because the interval
is far from zero, we have evidence that the f;; are indeed useful for predicting
accuracy. Further evidence comes from the estimated by; for each judge. All 36
of these estimates are positive, with no 95% posterior intervals including zero.

Now that a predictive relationship between the f;; and d;; has been estab-
lished, we can examine the extent to which the model’s probabilistic predictions
are an improvement over the f;;.

Probabilistic Predictions In this section, the model’s probabilistic accuracy
predictions, p;;, are compared to the f;; for the 20 trials that were excluded
from model estimation. Figure 1 displays the observed f;; versus the p;; for all
36 judges. The diagonal line in the graph is the identity line, reflecting instances
where f;; = p;;. Considerable variability is observed in the mapping from f;;
to p;; for different judges. Further, the f;; and p;; differ primarily for large f;;:
in these cases, the p;; are smaller. Thus, the model compresses the range of
probabilities.

As stated previously, the model’s posterior predictive distributions of p;; were
obtained for the 20 trials excluded from model estimation. We can summarize
these distributions in various ways to obtain predictive probabilities. A common
summary involves taking the means of the posterior distributions. Alternatively,
if we want more conservative predictive probabilities, we can take the 25" per-
centile of these distributions, for example. Slope, scatter, and bias statistics were
calculated for these two types of posterior summaries, along with statistics for
the observed f;;. These serve as measures of the extent to which the model
predictions are improvements over the f;;.

Figure 2 contains histograms of the difference between each judge’s observed
statistics and model-predicted statistics (using the means of the posterior pre-
dictive distributions). Values greater than zero reflect instances where a judge’s
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Fig. 1. Model mappings from reported probabilities to predicted probabilities. Points
are jittered horizontally to reduce overlap.
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Fig. 2. Differences between observed probabilities and model predictions for each judge
on the measures of bias, slope, and scatter.
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observed statistic is greater than his/her model-predicted statistic. While there
is judge variability, the graphs generally show that the model tends to yield
smaller bias and scatter statistics. These trends are supported statistically: 95%
confidence intervals for the mean difference in bias and scatter are (.039,.084)
and (.005,.007), respectively. While these are positive results for the model, the
slope statistics reflect a negative result: the observed slopes tend to be larger
than the model-predicted slopes, with the 95% confidence interval for the mean
difference being (.008,.022). I address this negative result in more detail below.

For model predictions using the 25" posterior percentiles, results are similar:
the predictions yield reductions in both bias and scatter, but they do not yield
increases in slope. Comparing the two types of predictions (25'" percentile pre-
dictions and mean predictions), both slope and scatter are virtually the same,
with mean differences of .001 and .0003, respectively. The conservatism of the
25 percentile predictions is reflected in the bias statistic. Mean bias for the
25 percentiles is —.036 and mean bias for the means is .006, with a 95% confi-
dence for interval for the mean difference being (—.043, —.041). One may argue
that the conservative predictions are too conservative, as the mean predictions
display near-perfect bias statistics.

3.3 Discussion

The hierarchical logistic model transformed judges’ subjective probabilities into
predicted probabilities that were better calibrated (i.e., bias closer to zero) and
contained less noise (i.e., reduced scatter). Importantly, the predictions were
made on trials that were excluded from the model estimation. Thus, fitted mod-
els of this type can be used to predict probabilities of unknown outcomes, an
attribute that is important for applications. More details appear in the General
Discussion.

‘While the model improved bias and scatter, it did not improve slope. Stated
differently, the model predictions were unable to better discriminate between
correct and incorrect outcomes. This is partly due to the fact that the observed
range of model predictions is smaller than the observed range of the f;; (as shown
in Figure 1). The result is also impacted by the fact that the p;; are increasing
functions of the f;;. This implies that the p;; follow the same ordering as the
fij, which does not leave much room for improvement in slope. In the General
Discussion, other statistical methods are considered that may improve slope.

4 General Discussion

Model-based corrections to subjective probabilities, such as those described in
this paper, have the potential to be useful in many applied situations. Further,
there exist many other statistical methods/models that can produce probabilistic
predictions and that may yield improvements in slope. Both of these topics are
considered below.
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4.1 Applications

The model considered in this paper is applicable to situations where judges re-
port many subjective probabilities in response to stimuli from the same domain,
such as medical diagnoses and aircraft inspections. Focusing on the latter appli-
cation, inspectors examine many areas of the aircraft and report the existence of
defects. These reports are often made with considerable uncertainty, especially in
nondestructive testing situations (e.g., [14, 15]). For example, to check for cracks
in bolt holes, inspectors sometimes rely on eddy current technology. An electrical
charge is sent through the material around the bolt hole, and inspectors rely on
a digital monitor to diagnose cracks. This occurs across a large number of bolt
holes on the aircraft.

If inspectors report probabilities of cracks in each bolt hole, the hierarchical
logistic model can be used to improve the reported probabilities of individual
inspectors. In such a scenario, inspectors may first complete test inspections
where the existence of a crack is known. The model can then be fit to these
inspections, and the fitted model used to improve reported probabilities for cases
where the existence of a crack is unknown.

4.2 Other Statistical Methods

The primary disadvantage of the hierarchical logistic model is that it fails to
yield improvements in slope. This is likely to be a problem with any statistical
model whose predictions are a linear function of the f;;, because the ordering
among the predictions will be the same as the ordering among the f;;. As a
result, it may be useful to study models or algorithms that utilize nonlinear
functions of f;;. There are at least two classes of methods that one may consider:
statistical learning algorithms (e.g., [16]) and psychological /psychometric models
of subjective judgment (e.g., [11,12,17-19]).

The main focus of statistical learning algorithms, such as boosting, is predic-
tion. The algorithms can make predictions that are nonlinear functions of the
inputs, meaning that they may more easily yield improvements in the slope mea-
sure (as opposed to the logistic model). A possible problem with the use of these
algorithms is lack of data: the algorithms are often suited to data containing
thousands of observations and hundreds of predictor variables. The applications
considered here may contain hundreds of observations and two predictor vari-
ables (subjective probability, judge who reported the probability). In such cases,
it is unclear whether the algorithms will result in improvements over more tra-
ditional statistical models.

Psychological models may also be used to transform subjective probabilities.
These models often posit psychological processes contributing to the construction
of subjective probabilities. As a result, the models often treat subjective prob-
ability as a response variable instead of a predictor variable. This may make it
difficult to use subjective probabilities to predict accuracy. On the other hand,
the psychological models may be modified to obtain distributions of accuracy
conditioned on subjective probability. If the models truly describe psychological
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processes contributing to subjective probability, then their accuracy predictions
may be better than the more general models/algorithms described earlier. In
any case, Bayesian model formulations and Markov chain Monte Carlo are likely
to be useful tools for studying these psychological models.
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Appendix: OpenBugs Code for the Hierarchical Logistic
Model

The code below takes a 36 x 40 matrix of accuracy data (O=incorrect, 1=correct)
and a 36 x 60 matrix of confidence data, where rows reflect judges and columns
reflect items. It simultaneously fits the hierarchical logistic model to 40 trials of
data from each judge and yields posterior predictions for the final 20 columns in
corr. The data file (not shown) contains the accuracy data matrix (corr), the
confidence data matrix (conf), and a 2 x 2 identity matrix (Iden). More details
on Bayesian hierarchical logistic models is found in, e.g., [20].

modelq{

for (i in 1:36){
for (j in 1:40){
corr[i,j] ~ dbern(pli,jl)

logit(pl[i,jl) <- bli,1] + bl[i,2]*conf[i, j]
}
# Hierarchical distribution on bs
bl[i,1:2] ~ dmnorm(mu.b[], invS[,])
}

# Posterior predictions for new confidence judgments
for (i in 1:36){
for (j in 41:60){
newp[i, (j-40)] <- bli,1] + bl[i,2]*conf[i, j]
b
}

# Priors

mu.b[1] <- dnorm(0,1.0E-5)
mu.b[2] <- dnorm(0,1.0E-5)
invS[1:2,1:2] ~ dwish(Idenl[,],2)



