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Abstract

Researchers are often interested in testing for measurement invariance with respect to an
ordinal auxiliary variable such as age group, income class, or school grade. In a
factor-analytic context, these tests are traditionally carried out via a likelihood ratio test
statistic comparing a model where parameters differ across groups to a model where
parameters are equal across groups. This test neglects the fact that the auxiliary variable
is ordinal, and it is also known to be overly sensitive at large sample sizes. In this paper,
we propose test statistics that explicitly account for the ordinality of the auxiliary variable,
resulting in higher power against “monotonic” violations of measurement invariance and
lower power against “non-monotonic” ones. The statistics are derived from a family of tests
based on stochastic processes that have recently received attention in the psychometric
literature. The statistics are illustrated via an application involving real data, and their
performance is studied via simulation.
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Testing for measurement invariance with respect to an ordinal variable

The study of measurement invariance and differential item functioning (DIF) has
received considerable attention in the psychometric literature (see, e.g., Millsap, 2011 for a
thorough review). A set of psychometric scales X is defined to be measurement invariant
with respect to an auxiliary variable V' if (Mellenbergh, 1989)

where T is the latent variable that the scales measure, f is the model’s distributional form,
the 7 subscript refers to individual cases, capital letters signify random variables, and
lowercase letters signify realizations of the variables. If the above equation does not hold,
then a measurement invariance violation is said to exist. We focus here on situations where
f() is the probability density function of X, and the measurement invariance violation
occurs because the model parameters are unequal across individuals (and related to V).

As a concrete example of the study of measurement invariance, consider a situation
where X includes “high stakes” tests of ability and V' is ethnicity. One’s ethnicity should
be unrelated to the measurement parameters within f(), and this expectation can be
studied by fitting the model and examining whether or not measurement parameters vary
across different ethnicities. Statistical tools that can be used to carry out this study
include likelihood ratio tests, Lagrange multiplier tests, and Wald tests (e.g., Satorra,
1989). These tools have greatly aided in the development of improved, “fairer”
psychometric tests and scales.

Along with categorical variables such as ethnicity, researchers are often interested in
studying measurement invariance with respect to ordinal V. Such variables can arise from
multiple choice surveys, where continuous variables such as age or income are binned into a
small number of categories. Alternatively, the variables may arise from gross, qualitative
assessments of a particular measure of interest, where individuals may be categorized as
having a “low,” “medium,” or “high” level of the variable of interest. While these variables
are relatively easy to find in the literature, there exist very few psychometric methods that
specifically account for the fact that V' is ordinal. More often, V' is treated as categorical so
that the traditional tests can be applied. Additionally, if there are many levels, then V'
may also be treated as continuous. The goals of this paper are to propose two test
statistics that explicitly treat V' as ordinal and to show that the statistics possess good
properties for use in practice.

The test statistics proposed here are derived from a family of tests that were recently
applied to the study of measurement invariance in psychometric models (Merkle & Zeileis,
2013; Strobl, Kopf, & Zeileis, 2013). In the following section, we provide an overview of the
family and describe the proposed statistics in detail. Subsequently, we report on the results
of two simulation studies designed to compare the proposed test statistics to existing tests
of measurement invariance. Moreover, we illustrate the proposed statistics using
psychometric data on scales purported to measure youth gratitude. Finally, we provide
some detail on the tests’ use in practice.
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Measurement Invariance

In studying measurement invariance, we consider situations where a p-dimensional
variable X with observations @;,7 = 1,...,n is described by a model with density f(x;;0)
and associated joint log-likelihood

n

(O xy,...,x,) = > UO;m;) = ilogf(mi;e), (2)

1=1

where 0 is some k-dimensional parameter vector that characterizes the distribution.

Tests of measurement invariance are essentially tests of the assumption that all
individuals arise from the same parameter vector 8. Thus, a hypothesis of measurement
invariance can be written as

H()i 02‘:90, (7;:1,...,71), (3)

where 6; reflects the parameter vector for individual ¢ (and modifications for subsets of 8
are immediate). The most general alternative hypothesis related to V' may then be written
as

Hik . 02 = 01,1., (4)

stating that the parameter vector differs for every unique realization of V. This alternative
is commonly employed when V' is categorical. In these situations, the likelihood ratio test
(LRT) compares a model where parameters are restricted across groups (i.e., across values
of V) to a model where parameters are free across groups; the exact parameter values
within each group are completely unrestricted. However, in situations where V' is ordinal or
continuous, (4) includes non-monotonic violations of measurement invariance. This allows
for instances where, e.g., the parameter values initially increase with V' and then decrease,
or where just one or two “middle” levels of V' differ from the rest. Researchers typically do
not expect such a result when testing measurement invariance w.r.t. ordinal or continuous
V', and researchers often cannot interpret such violations. Monotonic parameter changes
w.r.t. V are of much more interest in these situations, with the simplest type of change
given by the alternative hypothesis

. W if v; <,
Hy: 0= { 0B if v, > v, (5)

where v is a threshold dividing individuals into two groups based on V. This alternative is
implicitly employed in “median split” analyses, where v is given as the sample median of
V. The threshold v is usually unknown, however, so it is generally of interest to test (5)
across all possible values of v. The tests proposed below generally allow for this.

As stated previously, we specifically focus on situations where V' is ordinal and where
the measurement invariance violation is related to the ordinal variable (e.g., the violation is
of the type from (5) or the violation grows/shrinks with V'). Researchers typically test for
measurement invariance w.r.t. ordinal V' by employing the alternative from (4), which
implicitly treats V' as categorical. Thus, test statistics that explicitly treat V' as ordinal
should have higher power to detect measurement invariance violations that are monotonic
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with V.
In the section below, we review the theory underlying tests where V' is continuous
(and v is unknown). We then propose novel tests for ordinal V.

Theoretical Detail

This section contains background on the theory underlying the proposed statistics;
for a more detailed account, see Merkle and Zeileis (2013).

Model Estimation

We focus specifically on applications where the density f(x;;0) arises from a
structural equation model with assumed multivariate normality, though the proposed tests
extend beyond this family of models. Under the usual regularity conditions (e.g., Ferguson,
1996), the model parameters @ can be estimated by maximum likelihood (ML), i.e.,

0 = argmax((0;z,,....2,), (6)
0

or equivalently by solving the first order conditions
s(0;xz;) = 0, (7)
i=1

where

o0(0; x;) 85(0;@»)) | s)

8(07 :Cz) = ( 8‘91 LR aek

is the score function of the model (the partial derivative of the casewise likelihood
contributions w.r.t. the parameters ). Evaluation of the score function at 6 for

1 =1,...,n measures the extent to which the model maximizes each individual’s likelihood:
as an individual’s scores stray further from zero, the model provides a poorer description of
that individual.

Tests for Continuous V

As mentioned previously, when V' is categorical with a relatively small number of
categories, tests of measurement invariance typically proceed via multiple-group models. In
this situation, we use likelihood ratio tests to compare a model whose parameters differ
across groups to a model whose parameters are constrained to be equal across groups.
When V' is continuous, however, multiple-group models usually cannot be used because
there are no existing groups. Instead, we can fit a model whose parameters are restricted
to be equal across all individuals and then examine how individuals’ scores s(é; ;)
fluctuate with their values of V. If measurement invariance holds with respect to V', then
the scores should randomly fluctuate around zero. Conversely, if measurement invariance
does not hold, then the scores should systematically depart from zero. These ideas are
related to those underlying the Lagrange multiplier test and are discussed in detail by
Merkle and Zeileis (2013). Additionally, these ideas are related to those underlying
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modification indexes (e.g., S6orbom, 1989): the modification index is equivalent to a
Lagrange multiplier test, and the Lagrange multiplier test is contained in the family
described by Merkle and Zeileis (2013). Here, we focus on the tests’ properties that are
relevant for extending them to the ordinal case.

To formalize the ideas discussed in the previous paragraph, we assume that the
observations are ordered w.r.t. V', with x(; reflecting the data for the individual who has
the i"-smallest value of V. We then define the k-dimensional cumulative score process as

[n-t]
Bt;0) = I7'07Y2Y s(0;20)  (0<t<1) (9)

i=1

where |nt] is the integer part of nt and I is some consistent estimate of the covariance
matrix of the scores. Natural choices for I include the information matrix (which we use in
our applications and simulations below) or alternatively some kind of outer product of the
scores or sandwich estimator to guard the inference against potential misspecification of
the model (see Huber, 1967 for the theoretical foundation and Zeileis, 2006b for a
computational framework). Equation (9) simultaneously accounts for the ordering of
individuals w.r.t. V and decorrelates the scores associated with each of the £ model
parameters (which allows us to potentially make inferences separately for each individual
model parameter). Using ideas similar to those that were outlined in the previous
paragraph, the cumulative score process associated with each model parameter should
randomly fluctuate around zero under measurement invariance. Further, there exists a
functional central limit theorem that allows us to make formal inference with this
cumulative score process. Assuming that individuals are independent and the usual ML
regularity conditions hold, it is possible to show that (Hjort & Koning, 2002)

B(+6) % B°(), (10)

where <5 denotes convergence in distribution and B(.) is a k-dimensional Brownian
bridge. Thus, we can construct tests of measurement invariance by comparing the behavior
of the cumulative score process to that of a Brownian bridge. This is accomplished by
comparing a scalar statistic associated with the cumulative score process to the analogous
statistic of a Brownian bridge.

In practice, we have a finite sample size n and so the empirical cumulative score can
be represented within an n x k matrix with elements B(i/n;); that we also denote B(8);
below for brevity. Each row of the matrix contains cumulative sums of the scores of
individuals who were at the i/n percentile of V' or below. Scalar test statistics are then
obtained by collapsing over rows (individuals) and columns (parameters) of the matrix,
with asymptotic distributions of the test statistics under (3) being obtained by applying the
same functional to the Brownian bridge (Hjort & Koning, 2002; Zeileis & Hornik, 2007).

Specific test statistics commonly obtained under this framework include the double
maximum statistic

DM = max ,maxkyB@)ijy, (11)

=1,...,n j=1

goo

which essentially tests whether any component of the cumulative score process strays too
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far from zero and is easily visualized. This test discards information related to multiple
parameters fluctuating simultaneously, resulting in it having relatively low power for
assessing measurement invariance when multiple factor analysis parameters change
simultaneously (Merkle & Zeileis, 2013).

Test statistics that exhibit better performance in such situations aggregate
information across parameters and possibly also across individuals. These test statistics
include

oM = ot > N B(6), (12)

i=1,...,n j=1,...k
) )

max LM = max { (1 — )}_1 :12 kB(é)?j, (13)

i=t01 N n

with the former being a Cramér-von Mises statistic and the latter corresponding to a
“maximum” Lagrange multiplier test, where the maximum is taken across all possible
divisions of individuals into two groups w.r.t. V. Additionally, the max LM statistic is
scaled by the asymptotic variance ¢(1 — t) of the process B(t,8). In simulations, Merkle
and Zeileis (2013) found that both tests perform well when assessing simultaneous changes
in multiple factor analysis parameters, with the CvM test being somewhat advantageous in
their particular simulation setup. These simulations included situations in which subsets of
model parameters were tested; such situations are handled by focusing only on those

A

columns of B(0);; that correspond to the parameters of interest.

Proposed Tests for Ordinal V'

The theory described above was designed for situations where V' is continuous, so
that there is a unique ordering of individuals with respect to V. However, in situations
where V' is ordinal, there is only a partial ordering of all individuals, i.e., observations with
the same level of V' have no unique ordering. (Note that the same also applies if V' is
continuous in nature but is only discretely measured, leading to many ties.)

The ordinal statistics proposed here are similar to those described in Equations (11)
and (13) above, except that we focus on “bins” of individuals at each level of the ordinal
variable. That is, instead of aggregating over all © = 1,...,n individuals, we first compute
cumulative proportions ¢, (¢ =1,...,m — 1) associated with the first m — 1 levels of V. We
then aggregate the cumulative scores only over i, = |n - t,]. Test statistics related to (11)
and (13) above can then be written as

i i\ 2 A
WDM, = max { (1 - )} max_ |B(0);;], (14)

1€{i1yensim—1} M n J=1...,

max LM, =  max {Z (1—i)}_1 ZkB(é)fj, (15)

i€{ityensim—11 M n T,

resulting in a “weighted” double maximum statistic (weighted by the asymptotic variance
of the Brownian bridge) and an ordinal, maximum Lagrange multiplier statistic. Critical
values associated with these test statistics can be obtained by applying the same
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functionals to bins of a Brownian bridge, where the bin sizes result in the cumulative
proportions ¢, (¢ =1,...,m — 1) associated with the observed V.

For the WDM, statistic, the resulting asymptotic distribution is
max;_1__xmaxe—1__ m—1B°(te)/\/te(1 —t;). Note that the effect of the outer maximum can
be easily captured by a Bonferroni correction, as the k components of the Brownian bridge
are asymptotically independent. Moreover, the inner maximum is taken over m — 1
variables B°(t;)/\/ts(1 — t,) which are standard normal (due to the scaling with the

standard deviation of a Brownian bridge) and have a simple correlation structure:

\/s(l - t)/\/t(l —s) for s <t and both € {t1,...,t,_1}. Therefore, critical values and
p-values can be easily computed from a multivariate normal distribution with standard
normal marginals and this particular correlation matrix; see also Hothorn and Zeileis

(2008) for more details. In R, this can be accomplished using the mvtnorm package (Genz
et al., 2012).

For max LM, the resulting asymptotic distribution is
max—1,_m—1||B°(t)||3/(te(1 — t¢)) for which no simple closed-form solution is available.
However, critical values and p-values can be obtained through repeated simulation of
Brownian bridges. This functionality is built in to R’s strucchange package (Zeileis, 2006a),
which can be used to generally carry out the tests. Note that for models with only a single
parameter to be tested (i.e., k = 1) both test statistics are equivalent because then
max LM, = WDM?.

If V' is only nominal/categorical, there is not even a partial ordering, i.e.,
measurement invariance tests should neither exploit the ordering of V’s levels nor of the
observations within the level. In this situation, it is possible to obtain a test statistic by
first summing scores within each of the m levels of the auxiliary variable, then “summing
the sums” to obtain a test statistic (Hjort & Koning, 2002). This test statistic can be
formally written as

LM, = Z Z (B(é)izj - B(é)i4—1j)2 J <16)

0=1,..;mj=1,.k

where the first subscript on the two terms in parentheses are i, and i,_1, respectively (and
where we take i = 0, so that the cumulative score is B(0,0) = 0). Again, tests of subsets
of model parameters can be obtained by taking the inner sum over only the k* < k
parameters of interest. This test statistic discards the ordinal nature of the auxiliary
variable, essentially employing the alternative hypothesis from (4). A similar issue is
observed in testing for measurement invariance via multiple groups models and likelihood
ratio tests (or, equivalently, via Wald tests or Lagrange multiplier tests): we can allow 8 to
be unique at each level of the ordinal variable, but the ordinality of the auxiliary variable is
lost. In contrast, the statistics proposed above explicitly account for the fact that V' is
ordinal.

As demonstrated in the simulations below, the proposed ordinal test statistics are
sensitive to the measurement invariance violations that an analyst would typically expect
from an ordinal V. In particular, due to computing cumulative sums in B(é), violations
that occur as we move along the levels of V' can be captured well. This includes abrupt
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shifts in the parameters € at a certain level of V' as well as smooth increases/decreases in
the parameters. Taking a maximum over the k parameters as in WDM, will be more
sensitive to changes that occur only in one out of many parameters, while max LM, will be
more sensitive to changes occurring in several (or even all of the) parameters
simultaneously. Moreover, the test statistics are rather insensitive to anomalies in a small
number of categories of V' that are unrelated to the ordering of V. This is especially
relevant to situations in which the analyst has a large sample size, so that the usual
likelihood ratio test is overly sensitive to minor parameter instabilities (e.g., Bentler &
Bonett, 1980).

Simulation 1: Detecting Ordinal Invariance Violations

In this simulation, we demonstrate that the proposed test statistics are sensitive to
ordinal measurement invariance violations, moreso than traditional statistics. We generate
data from a two-factor, six-indicator model, with a measurement invariance violation
occurring in the unique variance parameters. We use the proposed test statistics to test for
measurement invariance simultaneously across the unique variances, which is similar to a
test of “invariant uniquenesses” (see Vandenberg & Lance, 2000).

The two “traditional” statistics that we consider generally treat the ordinal auxiliary
variable as categorical. These include the likelihood ratio test of measurement invariance in
the six unique variance parameters and the unordered LM test from (16). At the request of
reviewers, we also considered the Satorra-Bentler (2001) scaled likelihood ratio test
statistic with correction for difference testing, the Yuan-Bentler (1997) scaled test statistic,
and the use of AIC (Akaike, 1974) for detecting measurement invariance. We do not report
the latter results, because these test statistics performed worse than the usual likelihood
ratio test (both here and in Simulation 2).

Method

Data were generated from a two-factor model lacking measurement invariance in the
six unique variance parameters. Magnitude of measurement invariance violation, sample
size, and number of categories of the ordinal variable were manipulated. We examined
three sample sizes (n = 120, 480, 960), three numbers of categories (m = 4,8,12), and seven
magnitudes of invariance violations. The measurement invariance violations began at level
1 +m/2 of V and were constant thereafter. The unique variances for the “violating” levels
deviated from the lower levels’ unique variances by d times the parameters’ asymptotic
standard errors (scaled by y/n), with d = 0,0.25,0.5,...,1.5.

For each combination of n x m x d, 5,000 datasets were generated and tested via the
4 statistics described above. In all conditions, we maintained equal sample sizes at each
level of the ordinal variable (i.e., t, = £/m).

Results

Simulation results comparing the ordinal tests to the unordered LM test and the LRT
are presented in Figure 1. Rows of the figure correspond to n, columns of the figure
correspond to m, the x-axis of each panel corresponds to d, and the y-axis of each panel
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corresponds to power. It is seen that one of the proposed test statistics, the max LM,
statistic from (15), generally has the largest power to detect the ordinal measurement
invariance violations. The other three tests are considerably closer in power, with the
second proposed ordinal statistic (the double-max test from (14)) exhibiting the lowest
power at large violation magnitudes. This is because the double-max test discards
information about multiple parameters changing together at specific levels of the ordinal
variable (see Merkle & Zeileis, 2013, for related discussion), while the three other tests
under consideration make use of this information. Finally, it is seen that, in the small n
and large m conditions, the likelihood ratio test exhibits large Type-I error rates (i.e.,
power greater than 0.05 at d = 0). This is because the likelihood ratio test requires
estimation of a multiple-groups model, which is very unstable with large numbers of groups
and small sample sizes (as only n/m observations are available in each subsample). The
statistics proposed here are all of the LM-type and just require estimation of the
single-group model, leading to a clear advantage in these conditions.

To summarize, we found the max LM, statistic to be advantageous for detecting
measurement invariance violations that are related to an ordinal auxiliary variable. In
particular, power is generally higher, and the test does not require estimation of a multiple
group model. Thus, the statistic allows reasonable measurement invariance tests to be
carried out at small n/large m combinations. To further illustrate that the proposed
statistics are useful for testing violations related to an ordinal variable, we now compare
their performance to the likelihood ratio test at large n and small d.

Simulation 2: Minor Anomalies and Large n

In this simulation, we demonstrate that the proposed statistics are relatively
insensitive to minor parameter violations that are unrelated to the ordering of the auxiliary
variable. As noted earlier, this feature is especially applicable to situations where one’s
sample size is very large. Analysts often resort to informal fit measures in practice, because
the traditional LRT is nearly guaranteed to result in significance. This simulation is
intended to show that the proposed ordinal tests remain viable for large n.

Method

Data were generated from the same factor analysis model that was used in Simulation
1, with measurement invariance violations in the unique variance parameters. To
implement a minor measurement invariance violation, the unique variances were equal
across all levels of the ordinal variable except one (level 1+ m/2). At this particular level,
the unique variances were greater by a factor of d times the parameters’ asymptotic
standard errors (scaled by y/n), with d = 0,0.5,1.0,...,3.0. The number of levels of the
ordinal variable were the same as those in Simulation 1 (m = 4, 8,12), and sample sizes
were set at n = 1200, 4800, 9600. All other simulation features match those from
Simulation 1.

Results

Simulation results for the two ordinal test statistics, the unordered LM test, and the
LRT are presented in Figure 2. It is observed that results are very consistent across the
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sample sizes tested, implying that “practical infinity” is reached for this model by

n = 1200. We also observe a negative relationship between power and m; this is because
the measurement invariance violation occurred at only one level of the auxiliary variable.
As m increases (and n is held constant), the number of individuals violating measurement
invariance therefore decreases. As a result, power to detect the violation decreases with
increasing m.

The more interesting result of Figure 2 lies in the comparison of the four test
statistics within each panel of the figure. The two “unordered” test statistics both have
relatively high power to detect the measurement invariance violation, illustrating the result
of Bentler and Bonett (1980) and others that the likelihood ratio test statistic picks out
minor parameter discrepancies at large n. In contrast, the two ordinal test statistics that
we proposed have considerably lower power, with the WDM, statistic being the lowest and
the max LM, statistic being higher at larger values of d.

These results demonstrate that the proposed ordinal test statistics can be especially
useful at large sample sizes, where traditional test statistics result in frequent significance.
Both statistics exhibited much lower power to detect a measurement invariance violation
that occurs only at a single level of V.

Taken together, the results from Simulation 1 and Simulation 2 provide evidence that
the max LM, statistic should be preferred to the WDM, statistic for simultaneously
assessing measurement invariance across multiple parameters in factor analysis models.
The max LM, statistic has higher power to detect ordinal violations, and its power to
detect non-ordinal violations was similar to that of WDM, when the violation magnitude
was small (e.g., for d < 1.5). The max LM, statistic is advantageous because it can make
use of invariance violations that simultaneously occur in multiple parameters, whereas the
WDM, focuses only on the parameter with the largest invariance violation. Thus, the
statistics are likely to exhibit similar performance if only a single model parameter violated
measurement invariance. The only disadvantage to max LM, is that its critical- and/or
p-values must be computed by simulation, which can significantly increase computation
time. We return to this issue in the General Discussion.

In the next section, we compare the proposed statistics to the likelihood ratio test
with real data.

Application: Youth Gratitude
Background

With the positive psychology movement, the construct of gratitude has received much
research attention (for a review, see Emmons & McCullough, 2004). Recently, researchers
have begun to explore gratitude in youth. One potential problem with this is that
researchers, with no exception, have used adult gratitude inventories to measure youth
gratitude, thus raising the question of whether the existing gratitude scales used with
adults are valid in research with youth. Addressing this issue, Froh et al. (2011) had a
large sample of youth (n = 1401, ranging from late childhood (10 years old) to late
adolescent (19 years old)) complete the three most widely used adult gratitude inventories,
including Gratitude Questionnaire 6 (GQ-6; McCullough, Emmons, & Tsang, 2002),
Gratitude Adjective Checklist (GAC; McCullough et al., 2002), and Gratitude,
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Resentment, Appreciation Test-Short Form (GRAT-Short Form; Thomas & Watkins,
2003). The authors were interested in whether the youth factor structure for the gratitude
scales resembles that of adults, and whether the gratitude scales are invariant across the
youth age groups.

Method

Froh et al. (2011) used confirmatory factor models to study the invariance of three
youth gratitude scales across students aged 10 to 19 years. Due to sample size constraints,
the age variable included six categories: 10-11 years, 12-13 years, 14 years, 15 years, 16
years, and 17-19 years. Thus, age is an ordinal variable to which the proposed tests can be
applied.

To test for measurement invariance w.r.t. age, each of the three scales was
individually factor-analyzed using the items that comprised the scale. For each model, the
authors first fit a congeneric model (all parameters free for each level of age), followed by a
tau-equivalent model (factor loadings restricted to be equal across each level of age) and a
parallel model (all parameters restricted to be equal across levels of age). Because their
sample size was large (n = 1400), they could not rely solely on likelihood ratio tests (i.e.,
x? difference tests) for model comparison because the tests were overly sensitive at their
sample size. To supplement these tests, Froh et al. (2011) examined a set of alternative fit
indices, including the non-normed fit index, the comparative fit index, and the incremental
fit index (e.g., Browne & Cudeck, 1993). The authors generally found support for the
tau-equivalent models through these alternative fit indices: the likelihood ratio test often
resulted in significance even when the alternative indices indicated good fit.

In the analyses described below, we re-analyze the Froh et al. (2011) data using the
ordinal test statistics proposed in this paper. This results in a series of tests that are less
sensitive than the likelihood ratio test to minor parameter discrepancies, while being more
sensitive to ordinal violations of measurement invariance. We focus on two analyses from
Froh et al. (2011) where the likelihood ratio test resulted in significance (indicating that
the restricted model did not fit as well as the less-restricted model) but the alternative fit
measures indicated the opposite. These include comparison of a one-factor congeneric
model to a one-factor tau-equivalent model using the GQ6 and comparison of a one-factor
tau-equivalent model to a one-factor parallel model using the GAC. To conduct equivalent
analyses via the proposed tests, we fit the more-restricted model in each case and test for
instability in the focal model parameters.

Of the 1401 cases originally collected by Froh et al. (2011), we use here all subjects
with complete data (resulting in n = 1327).

Results

The results section is divided into two subsections, one for each analysis described
above. The first subsection contains an example of the ordinal statistics disagreeing with
the likelihood ratio tests, while the second subsection contains the opposite.

GQ-6. In fitting a tau-equivalent model and a congeneric model to the GQ-6 data,
Froh et al. (2011) used alternative fit indices to conclude that the tau-equivalent model was
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as good as the congeneric model. However, the likelihood ratio test comparing these two
models was significant (3, = 38.08,p = 0.009 for the data considered here).

We can use the proposed ordinal statistics to assess whether or not the factor loadings
in the tau-equivalent model fluctuate with respect to age. Unlike the LRT, the test does
not require parameters to differ across all subgroups. Instead, we test for deviations such
that a split into two subgroups is sufficient to capture the effect of V. In employing the
ordinal tests, we obtain WDM, = 2.91,p = 0.060 and max LM, = 11.16,p = 0.096. Both
p-values are clearly larger than that of the likelihood ratio test and neither is significant at
a = 0.05, which supports the conclusions that Froh et al. (2011) obtained from alternative
fit statistics. This provides further evidence that there is no systematic deviation of the
factor loadings along age and that the likelihood ratio statistic is overly sensitive, picking
up some non-systematic dependence on age.

Plots representing the statistics’ fluctuations across levels of age group are displayed
in Figure 3. The left panel displays the process associated with WDM, from (14), i.e., the
sequence of weighted maximum (over j) statistics for each potential threshold . The right
panel displays the process associated with max LM, from (15), i.e., the sequence of LM
statistics for each potential threshold i. In both cases, the test statistics in the sequence
assess a split of the observations up to age group ¢ vs. greater than ¢, and the null
hypothesis is rejected if the maximum of the statistics is larger than its 5% critical value
(visualized by the horizontal red line). Therefore, the final age group (17-19 years) is not
displayed, because the statistics associated with this final age group would encompass all
observations in a single group and hence always equal zero. It is observed that both
statistics generally increase with age, with WDM, being largest for a threshold of 15 years
and max LM, for a threshold of 16 years. The differing pattern of values for the 15- and
16-year-olds can be taken as an indication that some factor loading is unstable at an age of
15 or 16, but this is not a clear and general trend across all the tested loadings and age
groups.

GAC. In fitting tau-equivalent and parallel models to the GAC data, Froh et al.
(2011) obtained mixed results. The alternative fit indices did not all agree with one
another, and the likelihood ratio test indicated that the parallel model fit worse than the
tau-equivalent model (y3, = 167.72,p < 0.01 for the data considered here). Froh et al.
(2011) ultimately concluded that the tau-equivalent model provided a better fit than did
the parallel model.

To apply the ordinal statistics proposed in this paper, we fit the parallel model and
test for instability in the variance parameters (unique variance and factor variance) w.r.t.
age. This results in WDM, = 6.55,p < 0.01 and max LM, = 113.13, p < 0.01. Both of
these statistics agree with the general conclusion that the parallel model is not sufficient,
providing further evidence that the significant likelihood ratio test is not simply an artifact
of the large sample size.

Plots representing the statistics’ fluctuations across age groups are displayed in
Figure 4. The left panel displays the process associated with WDM,, while the right panel
displays the process associated with max LM ,. It is observed that both processes are fully
above the critical value, implying the measurement invariance violation. Additionally, both
processes peak at the 12—-13 age group, suggesting that parameters differ between
individuals up to 13 years of age and individuals older than 13 years of age.



ORDINAL MEASUREMENT INVARIANCE 14

The finding that variance parameters differ between individuals up to 13 years and
individuals over 13 years is reinforced by comparing the tau-equivalent and parallel models
to an intermediate model. This intermediate model is tau-equivalent in nature, but there
exist only two groups: individuals up to 13 years and individuals older than 13 years. A
likelihood ratio test implies that this intermediate model fits as well as the original
tau-equivalent model (x3; = 13.72, p = 0.62), with 16 fewer parameters (= 6-4 —2-4
because the four variances have to be estimated in only two rather than six age groups).
The intermediate model also fits better than the parallel model, as judged by a second
likelihood ratio test (y3 = 154.00,p < 0.01). Finally, using the proposed ordinal test
statistics with the intermediate model, we no longer observe further instability in the
variance parameters (WDM, = 1.84,p = 0.86; max LM, = 3.83,p = 0.99).

Summary

The application considered above shows that the ordinal test statistics can provide
useful information in situations where one might question significant likelihood ratio test
statistics. While researchers use rules of thumb to obtain decisions from other alternative
fit measures, the proposed statistics are proper tests of the hypothesis of interest. They can
be used to either supplement or replace the likelihood ratio test, depending upon the types
of measurement invariance violations in which the researcher has a priori interest. We
further describe the issue of supplementing vs. replacing the likelihood ratio test in the
general discussion.

General Discussion

In this paper, we proposed two statistics that can be used when one has an ordinal
auxiliary variable and wishes to study measurement invariance. We demonstrated via
simulation that these statistics have good properties, though these results necessarily
examined a small number of models and invariance violations and may not hold in all
situations. To our knowledge, the ordinal measurement invariance statistics proposed here
are the only ones that treat auxiliary variables as ordinal and thus direct power against
alternatives that are typically of interest to practitioners. Other methods treat the
auxiliary variable as either continuous or categorical, in a manner similar to the treatment
of ordinal predictor variables in linear regression. In the remainder of the paper, we
provide detail on test choice and on the tests’ applicability to other models.

Choice of Test

The results presented in this paper imply that the proposed ordinal statistics may
“miss” measurement invariance violations that are not monotonic w.r.t. V. More precisely,
while the suggested tests are also consistent for such non-monotonic violations, they seem
to be less powerful than the likelihood ratio test. We speculate that, in most applications,
this will not be a major issue because the researcher’s a priori hypotheses exclusively focus
on monotonic measurement invariance violations. For example, in the youth gratitude
application, we tested for measurement invariance across six age groups. If we observed a
measurement invariance violation whereby factor loadings were equal at all age groups
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except 14 years, we would have a hard time explaining the violation as anything but an
anomaly in the 14-year-olds. Further, if n is large, we are likely to suspect that the result
arises from the large sample size. We may still be interested in why the 14-year-olds
differed, but the analysis is purely exploratory at this point because this type of violation
was unexpected. However, there is generally a tradeoff between the ordinal statistics and
the likelihood ratio statistic. The proposed ordinal statistics usually provide more powerful
tests of one’s a priori hypothesis regarding measurement invariance w.r.t. ordinal V', while
the likelihood ratio statistic provides a more powerful test of general (non-monotonic)
measurement invariance w.r.t. V. While the latter feature may be important in some
high-stakes applications, many researchers are likely to find the former feature appealing
for their work.

Along with using likelihood ratio tests to study measurement invariance, researchers
may wish to treat ordinal V' as continuous (especially if V' has very many levels). As
described in detail by Merkle and Zeileis (2013), we can also use cumulative score processes
with continuous V| resulting in, e.g., maximum LM statistics and Cramér-von Mises
statistics. In fact, when the number of potential thresholds is large, the proposed max LM,
statistic will be very close to the max LM statistic described in Merkle and Zeileis (2013).
Thus, the formation of ordinal age groups (or other variables) is not necessary for testing
measurement invariance, and it may be beneficial to collect continuous age data (e.g., age
measured in days rather than in years).

There also exist alternative methods for testing measurement invariance w.r.t.
continuous V', including moderated factor models (Bauer & Hussong, 2009; Molenaar,
Dolan, Wicherts, & van der Mass, 2010; Purcell, 2002) and factor mixture models (Dolan
& van der Maas, 1998; Lubke & Muthén, 2005). Under the moderated factor model
approach, V' is inserted directly into the factor analysis model and allowed to have a linear
relationship with model parameters. Under the factor mixture model approach, individuals
are typically assumed to arise from a small number of distinct factor analysis models. The
ordinal variable V' could then be used to predict the probability that an individual arises
from each model. These treatments of ordinal V' as continuous will often be advantageous,
especially if the levels of V' are approximately equally-spaced and the relationship between
V' and the measurement invariance violation is linear. The approaches do require models of
greater complexity and may not be suitable for all ordinal V', however, while the methods
we propose here are generally suitable for ordinal V.

Finally, a practical issue associated with the proposed max LM, statistic involves the
computation of p-values: p-values and/or critical values must be computed via simulation
of a Brownian bridge, with the simulation depending on the relative proportion of cases at
each level of the ordinal auxiliary variable. Hence, a new simulation usually must be
conducted for each dataset, which can be somewhat time-consuming (on the order of
minutes, as opposed to seconds or hours).

Extension to Other Models

We focused on testing for measurement invariance in factor analysis models here, but
the proposed test statistics are applicable to other psychometric models that are estimated
via ML (or similar estimation techniques for independent observations that are governed by
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a central limit theorem). The only requirement for carrying out the tests is that the
casewise scores (Equation (8)) be available following model estimation. As a result,
applications to studying DIF in IRT are immediate (for a presentation involving
non-ordinal variables, see Strobl et al., 2013), as are general psychometric applications to
studying parameter stability w.r.t. ordinal auxiliary variables. These could include
applications where ordinal variables are explicitly included in the model, such as ordinal
factor analysis. We expect the same general results to hold for these applications, whereby
the proposed test statistics are better than the LRT for detecting monotonic instabilities.
The strucchange package (Zeileis, 2006a) noted previously can be used for these
more-general applications.

Summary

As demonstrated via simulation, the proposed test statistics have relatively high
power for detecting measurement invariance violations that are monotonic with the ordinal
variable, and they have relatively low power for detecting minor violations that are not
monotonic. The former feature implies that the statistics are good at detecting
measurement invariance violations that are interpretable to the researcher, while the latter
feature implies that the statistics are feasible in situations where the likelihood ratio test
commonly rejects Hy in practice (e.g., Bentler & Bonett, 1980). Furthermore, the focal
psychometric model does not have to be modified in any way, which differs from
approaches that may treat the ordinal variable as continuous. In all, the tests have
advantageous properties that should be useful in practice.

Computational Details

All results were obtained using the R system for statistical computing (R
Development Core Team, 2012), version 3.0.2, employing the add-on package lavaan 0.5-14
(Rosseel, 2012) for fitting of the factor analysis models and strucchange 1.5-0 (Zeileis,
Leisch, Hornik, & Kleiber, 2002; Zeileis, 2006a) for evaluating the parameter instability
tests. R and the packages lavaan and strucchange are freely available under the General
Public License 2 from the Comprehensive R Archive Network at
http://CRAN.R-project.org/. R code for replication of our results is available at
http://semtools.R-Forge.R-project.org/.
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Figure 1. Simulated power curves for the ordered and unordered max LM tests, the
ordered double-max test, and the likelihood ratio test across three sample sizes n, three
levels of the ordinal variable m, and measurement invariance violations of 0-1.5 standard
errors (scaled by \/n).
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Figure 2. Simulated power curves for the ordered and unordered max LM tests, the ordered
double-max test, and the likelihood ratio test across three sample sizes n, three levels of the
ordinal variable m, and measurement invariance violations of 0-3 standard errors (scaled
by \/n) occurring at a single level (the (1 +m/2)™ level) of the ordinal auxiliary variable.
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Figure 3. Fluctuation processes for the WDM, statistic (left panel) and the max LM,
statistic (right panel), arising from the GQ-6 data.
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Figure 4. Fluctuation processes for the WDM, statistic (left panel) and the max LM,
statistic (right panel), arising from the GAC data.
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