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Choice confidence is a central measure in psychological decision research, often being
reported on a probabilistic scale. Simple mechanisms that describe the psychological
processes underlying choice confidence, including those based on error and confirmation
biases, have typically received support via fits to data averaged over subjects. While averaged
data ease model development, they can also destroy important aspects of the confidence data
distribution. In this paper, we develop a hierarchical model of raw confidence judgments using
the beta distribution, and we implement two simple confidence mechanisms within it. We
use Bayesian methods to fit the hierarchical model to data from a two-alternative confidence
experiment, and we use a variety of Bayesian tools to diagnose shortcomings of the simple
mechanisms that are overlooked when applied to averaged data. Bugs code for estimating the
models is also supplied.
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In both experimental and applied contexts, people are of-
ten required to make choices under uncertainty. Applied
examples include students answering test questions, doctors
making diagnoses, and jurors entering verdicts. The specific
choice that is made often has significant implications, so it
is natural to gauge an individual’s certainty (“confidence”)
in his or her choice. As a result, the relationship between
choice confidence and choice accuracy has become a popular
topic in decision research. The topic is psychologically in-
teresting because it says something about the extent to which
judges have “meta-knowledge,” and the topic also has impli-
cations for interpreting others’ reports of confidence. While
confidence data are often messier and more subjective than
other psychological variables like choice and response time,
the utility of research on confidence is well summarized by
Koehler and Tversky (1994):

Unlike the measurement of distance, in which
fallible human judgments can be replaced by
proper physical measurement, there are no ob-
jective procedures for assessing the probability
of events such as guilt of a defendant, the suc-
cess of a business venture, or the outbreak of
war. Intuitive judgments of uncertainty, there-

The authors thank William Batchelder, Michael Lee, Eric-Jan
Wagenmakers, Hao Wu, and an anonymous reviewer for comments
that helped improve the paper. Correspondence to Edgar C. Merkle,
Department of Psychology, Wichita State University, Wichita, KS
67260-0034. Email: edgar.merkle@wichita.edu.

fore, are bound to play an essential role in peo-
ple’s deliberations and decisions. (p. 565)

In decision research, confidence is often reported on either
a probabilistic scale or an ordinal scale, with ordinal con-
fidence receiving more attention in the modeling literature
(e.g., Lee & Dry, 2006; Ratcliff & Starns, 2009; Van Zandt,
2000; Vickers, 1979). In probabilistic confidence experi-
ments, the focus of this paper, judges are typically instructed
to report calibrated probabilities: probabilities that, on av-
erage, match the long-run proportion of correct responses.
Confidence is then compared to proportion correct in order
to determine the “accuracy” of the confidence judgments.

Research on probabilistic confidence tends to show that
judges are overconfident, meaning that their average confi-
dence tends to be larger than their proportion correct over
sets of items. As a result, decision researchers have proposed
a number of psychological mechanisms that may contribute
to overconfidence. These mechanisms vary widely in com-
plexity. Focusing on simpler mechanisms, Koriat, Lichten-
stein, and Fischhoft (1980) studied the impact of confirma-
tion biases on overconfidence. They proposed that, in as-
sessing confidence, a judge focuses heavily on evidence that
supports her choice. Thus, the judge focuses on reasons why
her chosen alternative is true and reasons why her unchosen
alternative is false, neglecting other evidence. In a similar
vein, McKenzie (1997) proposed an alternative underweight-
ing bias, in which all evidence for and against the unchosen
alternative is largely neglected. Further, Erev et al. (1994)
showed that systematic biases are not necessary to account
for overconfidence; the addition of random error to confi-
dence judgments can yield an overconfidence effect.
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More complex mechanisms underlying probabilistic con-
fidence have been proposed within models such as HyGene
(R. P. Thomas, Dougherty, Sprenger, & Harbison, 2008),
the Poisson race model (Merkle & Van Zandt, 2006), and
the Two-Stage Dynamic Signal Detection model (Pleskac &
Busemeyer, 2010). These models generally account for mul-
tiple observed measures, including choice, confidence, and
response time. HyGene, related to the earlier Minerva-DM
(Dougherty, Gettys, & Ogden, 1999), generally describes
mechanisms by which individuals generate and evaluate hy-
potheses in various tasks. Within this context, probability
judgments stem from the relative evaluation of candidate hy-
potheses generated in memory. The Poisson race model, on
the other hand, specifies a way by which incoming stim-
ulus information is translated into choice and confidence.
Compared to HyGene, it is less specific about the source of
the stimulus information but allows for analytic model pre-
dictions. Finally, the Two-Stage Dynamic Signal Detection
model is an extension of the diffusion model to confidence.
It assumes that confidence is based on evidence that accrues
after a choice is made. Compared to the other models men-
tioned, it provides the most complete description of observed
response time distributions and their relationships to confi-
dence and choice.

The models described above, both simple and complex,
have received support from some combination of experimen-
tation, simulation, and fits to data, leading one to question
whether the more complex models are necessary. That is, if
the simple models can adequately describe the data, then they
would naturally be preferred over the complex models. Im-
portantly, the models have usually been fit to averaged data,
neglecting individual differences in subjects, individual dif-
ferences in items, and other peculiarities in the raw data. By
implementing the simple models in a hierarchical framework
with raw data, we may study their shortcomings in a more
detailed fashion. This can point to areas where the simple
models (and corresponding theory) are lacking, and it can
also demonstrate the need for more complex models.

In the following pages, we first describe a hierarchical
model that allows us to study simple models’ abilities to ac-
count for individual differences and for trial-by-trial confi-
dence data. This is the same hierarchical approach to model-
ing individual differences used throughout this special issue,
being especially related in spirit to the other decision mak-
ing models of Nilsson, Rieskamp, and Wagenmakers (this
volume) and of van Ravenzwaaij, Dutilh, and Wagenmakers
(this volume). The model utilizes the beta distribution to ac-
count for the doubly-bound probability scale, and the model
is estimated via Bayesian methods. After presenting both
the model and approaches for incorporating psychological
theories within it, we describe an application to data from a
two-alternative decision experiment testing general financial
knowledge. We then conduct a thorough study of the fitted
model, illustrating the many ways by which the model can be
compared to the observed data and detailing the shortcom-
ings of the simple models. Finally, we discuss some general
weaknesses of the simple models and describe areas where
both theory and models can be improved.

Model

The model described here generally follows the beta re-
gression framework developed by Smithson and Verkuilen
(2006). Letting c;; be judge i’s reported confidence on
item/stimulus j i = 1,...,N;j = 1,..., M), we assume
that confidence arises from a beta distribution. For example,
a simple model assuming that all judges’ confidence arises
from a single beta distribution is:

cij ~ Beta(a, §). (1)

Smithson and Verkuilen’s framework influences the model
in two major ways. First, instead of the above parameteriza-
tion, the beta distribution is parameterized with a mean pa-
rameter u = a/(a + ) and a precision parameter ¢ = @ + (3.
As shown below, it is more intuitive to model the mean and
precision instead of modeling the traditional beta distribu-
tion parameters. Second, because the beta distribution has
bounds at (0,1), the ¢;; must have the same bounds. If this is
not the case, then we can take simple linear transformations
of the ¢;; so that they have bounds at (0,1). This allows us to
use the beta distribution to generally model doubly-bounded
data, so long as the locations of the bounds are known. We
next describe the implementation of simple confidence mod-
els within the beta framework, and we then describe hierar-
chical generalizations of the model.

Psychological Theories

We implement two psychological mechanisms of over-
confidence using the beta-distributed models: an error mech-
anism and a confirmation bias mechanism, similar to those
described in the introduction.

Confirmation Bias We implement a confirmation bias
within the above beta distribution by modeling the u param-
eter. Starting with the notion that judges would be well cal-
ibrated except for the bias, we seek equations that translate
calibrated, “internal” confidence judgments into biased, re-
ported confidence judgments. One such equation is:

w

p[j

=, 2
P+ =pij)”

C,’j

where p;; is judge i’s calibrated confidence for item j, and
w € (0,00) represents a bias parameter. This equation,
which was discussed by Karmarkar (1978) and also arises
from Tversky and Koehler’s (1994) support theory, allows
for overconfidence and underconfidence via the w parame-
ter (also see Shlomi & Wallsten, 2010). Figure 1 shows how
this equation translates calibrated confidence (x-axis) into re-
ported confidence (y-axis). It can be seen that, for values of
w less than 1 (left panel), reported confidence is smaller than
calibrated confidence. The opposite is true for values of w
greater than 1 (right panel). Finally, if w = 1, judges are well
calibrated.

The above equation is not the only one we could use (see
McKenzie, Wixted, Noelle, & Gyurjyan, 2001 for others),
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Figure 1.
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but it has a number of reasonable properties that make it suit-
able for the purposes of this paper. First, the equation always
passes through the points (.5,.5) and (1, 1). Judgments of .5
and 1 usually reflect complete uncertainty and complete cer-
tainty, respectively, so the equation implies that judges have
knowledge of when they are guessing (i.e., when their true
confidence is .5) and when they know the answer (i.e., when
their true confidence is 1). Next, values of w greater than one
imply a confirmation bias. To be specific, the applications
in this paper require p;; > 0.5 (if not, judges would choose
the other alternative). When w > 1 in this situation, confi-
dence in the chosen alternative (p;;) is decreased less than is
confidence in the unchosen alternative (1 — p;;). This implies
that confidence in the chosen alternative is weighted more
heavily than is confidence in the unchosen alternative, result-
ing in a confirmation bias. Conversely, when w < 1, judges
exhibit conservatism (more weight placed on the unchosen
alternative).

Finally, while not crucial for our current purposes, it can
be shown that the above equation is equivalent to a mul-
tiplicative model on the log odds of calibrated confidence.
Based on Equation (2), we have that:

1—pi)”
pi;+ (1= pij)”
It is then easily shown that:
logit(c;;) = wlogit(p;;). 3)
Random Error Random error can be captured by the ¢ pa-

rameter of the beta distribution, with large values implying
little error and values close to zero implying considerable

Curves obtained from Equation (2) for different values of w.
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error. This is similar to the approach of Erev et al. (1994),
who applied normal error to logit(p;;) (i.e., a logit-normal
distribution) in order to model ¢;;. The beta distribution can
be advantageous over this approach because it allows us to
model a linear transformation of confidence, as opposed to
using the nonlinear logit transformation. This can ease inter-
pretation of model parameters. The logit-normal distribution
can also exhibit unstable parameter estimates when used to
model data on the unit interval.!

Summary By incorporating psychological theories in the
model, we now have:

¢

C,'j

Mij

Beta(,u,»j, ¢)
piil (P + (L= pip)"),

' The log-normal distribution, a close relative of the logit-normal
distribution, is markedly unstable. Schmoyer, Beauchamp, Brandt,
and Hoffmann (1996) specifically show that the log-t family, of
which the log-normal is a boundary case, has no moments at all
with the exception of the log-normal, which is itself not uniquely
determined by its moments. Exactly how this carries over to the
logit-normal is not entirely clear at this time, but the series expan-
sion of the log-likelihood of the logit-normal contains exponentially
diverging terms, whereas the beta has only algebraic terms. Because
the sample space is bounded, all of the logit-normal’s moments ex-
ist. However, we have noticed substantial instability when the logit-
normal is used to model values on the unit interval. This is a partic-
ular problem when exact boundary observations are replaced with
a value strictly inside the unit interval. More research needs to be
done on this topic.
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with w being a free parameter that represents cognitive bias
and ¢ being a free parameter that represents the magnitude of
random error in confidence. For simplicity, we assume that
judges are calibrated to the group. The assumption entails
setting p;; = p; V i, where p; is the empirical proportion cor-
rect for item j (though see the general discussion for some
relaxations of this assumption).” This leaves w and ¢ to be
estimated.

Hierarchical Models

The above model assumes a single w and ¢ across all
judges. A hierarchical extension of the model, allowing each
judge to have her own w and ¢, is implemented in this paper.
Such an extension is straightforward via link functions:

cij ~ Beta(uj, ;) 4
pij = pi /Py + (1= pi)"™) )
w;i/20 ~ Beta(uy, ¢y),0 < w; <20 (6)
log(¢:) ~ N(ug, o), ©)

where the hyperparameters u,,, ¢y, ty, and 0'5, all receive
prior distributions and are estimated with the model. The
above equations show that we assume a normal hierarchical
distribution on log(¢;) but not on w;. Once w; gets close to 20,
the model makes the same substantive prediction, assigning
pij = 1 for almost all values of p;;. Thus, if we take the w; to
be bounded at 0 and 20, we can use a beta hierarchical dis-
tribution. This is advantageous because the beta can assume
more shapes than the normal distribution, potentially result-
ing in better models. As described in the application, we
can further model y,, to summarize effects of experimental
manipulations.

The above model is most easily estimated in Bugs (e.g.,
A. Thomas, O’Hara, Ligges, & Sturtz, 2006) via Bayesian
methods. For the data described below, sampling speed is
reasonable (=~ 5 minutes per 3,000 iterations), and conver-
gence is achieved by about 2, 000 iterations. Judging the fit
of the hierarchical model (which reflects the adequacy of the
simple mechanisms) is difficult, however, because the error
distribution does not have to be bell-shaped (in fact, it is of-
ten U-shaped). We illustrate some tools that are useful for
gauging the model’s fit below; for the most part, these are
general tools that can be used in general hierarchical model-
ing contexts.

Application: Confidence in
Financial Knowledge

To illustrate the model, we use data from Experiment 2
of Sieck, Merkle, and Van Zandt (2007). In this experiment,
141 participants completed a 2-alternative, 30-item test of
general financial knowledge. Each participant was assigned
to one of three conditions differing in the way that partic-
ipants reported confidence. Based on a verbal theory, the
general goal of the experiment was to study confidence elici-
tation conditions that reduce overconfidence. A specific goal
was to determine whether judges report lower confidence if

they explicitly consider the unchosen alternative prior to con-
fidence elicitation. We will first describe the experimental
conditions, and we will then describe application of the hier-
archical beta model.

Methods

All participants completed 30 two-alternative items on
general financial knowledge. In the control condition of
the experiment, each participant chose an alternative and
then reported a probability in (.5,1) that his/her choice was
correct. Probabilities were bounded from below at .5 be-
cause, if the judge reports a probability less than .5, then
she should have chosen the other alternative. In the “choice,
independent” (CI) condition, each participant chose an al-
ternative and then reported confidence that each individ-
ual alternative was true. Finally, in the “explain, indepen-
dent” (EI) condition, participants first chose a correct alter-
native. For each alternative, they then wrote an explana-
tion for why the alternative could be true and reported confi-
dence in that alternative. For both the CI and EI conditions,
participants’ final choice confidence was obtained by taking
P(chosen)/[P(chosen)+P(unchosen)]. The researchers’ hy-
pothesis was that, as compared to the standard condition,
confidence would be lower in the CI and EI conditions.?

Because confidence was bounded at .5 and 1, we needed
to transform the confidence judgments so that they lied in
(0,1). This was accomplished via clfj = (¢;j — 0.5)/0.5, with
judgments obtaining values of 0 or 1 perturbed slightly to
avoid numerical instability (see Smithson & Verkuilen, 2006,
p. 57). This transformation implicitly restricts the p;; to lie
in (0.5,1) as well (see Equation (2)); for the current data,
this restriction was satisfied as each p; was greater than 0.5
However, this may not generally be the case and reflects one
limitation of using Equation (2).

Model

We make one modification to the hierarchical beta model
presented in Equation (4) to better conform to this specific
experiment. We model u,,, the mean of the hierarchical beta
distribution, as:

logit(uy,;) = bo + bilcy; + bolgy,, ¥

where I¢p; indicates whether or not judge i was in the CI
condition and Ig;; is defined similarly. This equation allows
the mean of the hierarchical beta distribution to vary from
condition to condition, which implicitly allows the shape of
the distribution to vary. We can assess the effects of the ex-
perimental conditions through the b; and b, parameters. Be-
cause the ¢; represent unsystematic error in our model, we

2 The simple models implicitly make this assumption in being fit
to data averaged over subjects.

? Plausibility of the incorrect alternative was also manipulated in
the experiment, but we ignore that here for simplicity. Preliminary
modeling indicated that inclusion of this manipulation in the model
did not result in any improvement.
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assume that they are not affected by the experimental condi-
tions. Preliminary modeling indicated that this was a reason-
able assumption.

The model was fit in OpenBugs with three chains of pa-
rameters being sampled for 7,000 iterations each. The first
2,000 iterations were discarded from each chain as burn-in,
with convergence being judged through time series plots, au-
tocorrelation function plots, and Gelman-Rubin statistics.

Results

In examining the model’s fit to data, we generally con-
clude that the model captures general regularities in the em-
pirical data but misses many details. We present five dif-
ferent aspects of the estimated model that help demonstrate
this conclusion. They are (1) analyses regarding the effect of
experimental conditions; (2) analyses regarding the ability of
the model to predict confidence in each condition; (3) anal-
yses regarding the ability of the model to predict confidence
for individual subjects; (4) an examination of the utility of
the hierarchical distributions within the model; and (5) an
examination of the sensitivity of the results to the prior dis-
tributions. We employ a variety of “model-checking” tools
to demonstrate the model’s correspondence to data, including
posterior predictive distributions, simulation of data from the
fitted model, and Bayes factors.

Experimental Effects The estimated hierarchical distribu-
tions on the w; (see Equations (6) and (8)) are presented in
Figure 2 separately for the three experimental conditions.
We can see that the distributions are positively skewed and
slightly differ in shape across the three conditions (CI and EI
being slightly more skewed than Control). The dotted ver-
tical line in each histogram at the point w = 1 represents
perfect calibration (i.e., perfect mapping from internal confi-
dence to mean reported confidence). It can be seen that, in
the hierarchical distributions for the two experimental con-
ditions, there is more density below 1 than there is in the
hierarchical distribution for the control condition. This pro-
vides evidence that judges in the two experimental conditions
reported lower confidence than did judges in the control con-
dition. Posterior intervals for the specific impact of the con-
ditions are available via the b; and b, parameters; these pa-
rameters are both negative, with neither of the 95% intervals
containing 0.

Along with posterior intervals, it is possible to calculate
a Bayes factor to test hypotheses that the mean value of
w equals 1 in each condition. This equality hypothesis is
substantively interesting because it reflects perfect calibra-
tion. To calculate the Bayes factors, we employ the Savage-
Dickey density ratio (Dickey & Lientz, 1970; Wagenmak-
ers, Lodewyckx, Kuriyal, & Grasman, 2010). Briefly, this
entails evaluation of parameters’ prior and posterior distribu-
tions at the hypothesized value of 1. The ratio of these two
distributions then yields the Bayes factor. The hypotheses
are slightly more complicated than w,, = 1 because, within
the model, u,, is the mean of w/20 and is itself modeled via
a logit transformation. Thus, the following hypotheses are

equivalent to u,, = 1 in the three conditions:

Heontrol by = 1og(.05/.95)
Her: b+ by = 10g(05/95)
Hgi: bo+ by = 10g(05/95)

The prior distributions for by, by, and b, were all taken to
be independent normal, so the implied prior distributions for
sums of these parameters follow straightforwardly from the
individual priors. Using logspline density estimates for the
posterior distributions of by, bg+ b1, and by + b,, we calculate
Bayes factors for Heontrol, Her, and Hgp as 24.4, 0.0001, and
0.006, respectively. As can be seen in Figure 2, the Bayes
factors imply that subjects in the control condition were gen-
erally well-calibrated, while those in the experimental condi-
tions were not (tending towards conservatism). These results
appear to disagree with the observed data, which generally
exhibit a greater amount of overconfidence. Specifically, the
observed proportions of subjects exhibiting overconfidence*
in each condition are .77 (control), .48 (CI), and .50 (EI).
Within the model, the predicted proportion of overconfident
subjects can be obtained by calculating the proportions of
the Figure 2 distributions greater than one. These predicted
proportions are .60 (control), .12 (CI), and .19 (EI). Thus, on
the basis of the w parameter, the model predicts less over-
confidence than is observed. The error term (the ¢;) can also
account for overconfidence, however, so that the model at-
tributes the remaining observed overconfidence (i.e., that not
predicted by the w parameter) to the error term. This implies
that either (1) random error drives empirical overconfidence
(especially in the CI and EI conditions), or (2) the ¢; have
absorbed some systematic bias that was not accounted for in
our model. For further discussion on the difficulty in dis-
tinguishing these two explanations, see Juslin, Winman, and
Olsson (2000) and Merkle, Sieck, and Van Zandt (2008).

Predictions By Condition We have estimates for by, by,
and b;, and we can insert those estimates into Equation (8)
to obtain a w for each condition. Each w could then be in-
serted into Equation (4) with other estimated parameters to
obtain predicted confidence distributions for each condition.
This is misleading because the predictions do not capture the
variability inherent in the hierarchical distributions on the w;
(e.g., Gelman, Carlin, Stern, & Rubin, 2004). Further, the
hierarchical distributions on the w; are asymmetric (beta dis-
tributed), which implies that means of the distributions may
inaccurately reflect model predictions. As a result, we sim-
ulate data from the estimated model and compare the simu-
lated predictions to the observed data. We simulated 1,000
experiments of data, with number of subjects in each condi-
tion and number of items matching that of the real experi-
ment. For each subject i, we first drew w; and ¢; from the es-
timated hierarchical distributions. For each item j, we then:
(a) obtained y;; from Equation (2) using w; and the empirical
ﬁj; and (b) drew c;; from Beta(u;;, ¢;).

* Overconfidence is defined as a subject’s mean confidence being
larger than his/her proportion correct
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Figure 2.
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Summarizing the simulated data by condition, Figure 3
contains quantile-quantile plots comparing observed confi-
dence to the simulated confidence judgments. From left to
right, the 5 points in each plot represent 10th, 30th, 50th,
70th, and 90th percentiles, respectively. The extent to which
the points fall along the diagonal reflect the extent to which
the predicted percentiles match the observed percentiles. The
plots show that the model does well close to the bounds of the
confidence scale, picking up subjects’ (over)use of .5 and 1.
The model generally predicts too few confidence judgments
in the middle of the scale, however, with the discrepancy be-
ing most apparent in the control condition. It is plausible
that this discrepancy comes from the frequent occurrence of
non-substantive judgments (i.e., those for which the subject
is not paying attention to the experiment) at the scale bounds.
The theories described in the introduction are largely mute
on overuse of the endpoints. The hierarchical beta model
is such that, if large proportions of density are assigned to
each bound, there cannot be a third “bump” of density in the
middle of the scale.

Fit to Subjects In addition to obtaining predictions for ex-
perimental conditions, we can examine predictions for indi-
vidual judges. Figure 4 is a plot of observed vs predicted
mean confidence for each judge. The extent to which the
points fall along the diagonal reflects the extent to which the
predictions match the observations. We see that the model
predictions are generally accurate, though they are too large
for the means close to .5 and too small for the means close to

1. These “misses” may stem from the fact that the estimated
error distributions are generally U-shaped, so that the error
can pick up masses of points at either scale bound without
shifting the mean all the way to the bound. Further, shrink-
age of the w; to the group may also contribute to the misses.

We can also examine the extent to which the model pre-
dicts trial-by-trial data for each subject. It is perhaps most
informative to examine extreme subjects that the model can-
not fit. Figure 5 contains data from four subjects whose re-
sponses differ considerably, with “true confidence” (the p;;’s)
on the x-axis and reported confidence on the y-axis. Points
reflect individual observations from a judge, and lines reflect
the model’s predicted mapping from true confidence to mean
reported confidence (making use of the estimated w’s and
Equation 2). We can see that the lines are definitely influ-
enced by the points in the graph, but there is considerable
variability around these lines.

As the reader may have already discerned, the previous
graphs are inadequate because mean predictions are not the
best model summaries. Confidence data from individual
subjects are often skewed, U-shaped, and/or non-normal, so
means alone do not offer a good summary of the observed
data. We must also consider the error distribution around the
mean. Thus, as we did for the experimental conditions, it is
more useful to examine observed vs predicted quantiles of
the confidence distribution. For each subject, these quantiles
arise from a mixture of 30 beta distributions (one for each
item), so we simulate from the estimated model to obtain
predicted quantiles and variability in model predictions. The
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Figure 3. Observed vs predicted percentiles of confidence distributions for each experimental condition. The five points represent the 10th,
30th, 50th, 70th, and 90th percentiles, and predicted percentiles are obtained from simulations of the fitted model.
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Figure 5.
observed data, and lines reflect model predictions.
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simulation proceeded as follows. For subject i responding
to item j, we obtained y;; from Equation (2) using the es-
timate w; and the empirical pj- We then drew c¢;; from the

Beta(u;j, 35:). Subject i’s simulated data then consisted of 30
draws from different Beta distributions. The entire proce-
dure was repeated 1,000 times for each subject to observe
variability in the model predictions.

Figure 6 contains plots of observed vs predicted quantiles
for the same four subjects as before. From left to right, the
five points reflect the 10th, 30th, 50th, 70th, and 90th per-
centiles, respectively. Vertical lines reflect variability in the
model predictions (specifically, the middle 90% of the pre-
dictions). Across graphs, we can see that the model predic-
tions have considerable variability in the middle percentiles
and little variability in the end percentiles. This is because
the error distributions are generally U-shaped, meaning that
there will always be many judgments at the endpoints and
few in the middle.

We chose the four specific subjects here because they re-
veal some shortcomings of the model. Both Subject 3 and
Subject 14 avoided use of 50% confidence judgments, which
generally disagrees with most subjects’ data. The top two
graphs show that the estimated model cannot account for
this, with predictions for the 10th and 30th percentiles be-
ing lower than the observed data. This is likely due to the
general predominance of 50% judgments in the data, which
overpowers the individual subjects’ data. Next, Subject 18
reports only judgments near 50%. The model now overpre-

dicts the 70th and 90th percentiles because of the general
predominance of 100% judgments in the data. Finally, Sub-
ject 71 almost exclusively reports 50% or 100% judgments.
The model picks up the end percentiles well (the 10th and
30th percentile points overlap), but its prediction for the 50th
percentile (median) exhibits considerable variability.
Finally, we can observe the extent to which subjects’ es-
timated w parameters track (mis-)calibration. Figure 7 dis-
plays the estimated w; versus overconfidence for each judge.’
The vertical dotted line reflects the point of good calibration
within the model (w = 1), and the horizontal dotted line re-
flects the point of good calibration empirically (OC = 1). It
is observed that larger values of w are related to larger values
of OC, which we would expect for sensible model estimates.
However, there are many subjects with estimated w’s below 1
and OC above 0. This is another demonstration of the contri-
bution of the error terms (¢;) to OC. The correlation between
w and OC is .43, with a 95% confidence interval of (.28,.55).

Hierarchical Distributions Our Bayes factors for the ex-
perimental conditions (presented in an earlier section) signify
that the means of the w distributions do not equal 1 for the
CI and EI conditions. This implies that the power equation
(Equation (2)) is more useful than a simple error model stat-
ing that u;; = p;; V i, j, with all miscalibration being due to

5 Overconfidence is defined here as a judge’s mean confidence
minus proportion correct.
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Figure 6. Observed vs predicted percentiles of confidence distributions for four selected subjects. The five points represent the 10th, 30th,
50th, 70th, and 90th percentiles, and predicted percentiles are obtained from simulations of the fitted model. The vertical lines reflect the
middle 90% of model predictions for each percentile.
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the error parameters ¢;. We can go on, however, to examine
the extent to which the hierarchical aspect of the model is
useful. This entails an examination of ¢,,, the precision pa-
rameter of the hierarchical distribution on w, and 0'35, the vari-
ance of the precision parameter ¢. Focusing on ¢,,, large val-
ues reflect little variability around y,,. For example, if y,, = 1
and ¢,, = 7500, then 95% of the w; will fall between .9 and
1.1. This corresponds to subjects’ mean reported confidence
falling within .02 units of true confidence, which implies
small individual differences among judges. We could use
an encompassing prior distribution approach (e.g., Hoijtink,
Klugkist, & Boelen, 2008) to test H; : ¢, > 7500 vs the
unrestricted H, : ¢,, > 0, but it is unnecessary here. This
is because the largest sample from the posterior distribution
of ¢, is 522.25, which still implies considerable variability
in the w; (for u,, = 1, 95% of w’s lie between .66 and 1.40).
The Bayes factor for H, vs H, is therefore very close to 0.

We next focus on a’i, the variance of the precision param-
eter for observed confidence (see Equation (4)). The model
contains a normal prior distribution on log(¢), so we could
use the encompassing prior approach to obtain a Bayes fac-
tor testing H3 : 0'5) ~ 0 vs the unrestricted H, : 0'5, > 0. This

would involve defining a range of (J’é values deemed to be
sufficiently close to zero, and then comparing the proportion
of the prior and posterior distributions falling in this range.
Examining the posterior samples of O’é, however, we find that
the smallest sampled value is 0.165. This corresponds, e.g.,
to an error standard deviation of .35 around a mean confi-
dence judgment of 0.75. Because this reflects considerable
error on a scale with bounds at 0.5 and 1, the Bayes factor
for H; vs H, is again close to zero. To summarize more
generally, we have found that the hierarchical distributions
on w and ¢ are both helpful for accounting for individual
differences across subjects.

Sensitivity Analysis Finally, we can examine the sensitiv-
ity of the results to the noninformative prior distributions
used to estimate the model. The specific prior distributions
were:

by ~ N(0,2.9)
by ~ N(0,2.9)
b, ~ N(0,2.9)
¢, ~ U(0,2000)
s~ N(0,107%)

0,7 ~ Gamma(.001,.001).

The priors on the b parameters look informative here, but
they are modeling logit(u,,) and not y,, directly. When con-
sidering u,, directly, these priors are roughly noninformative.

To examine the sensitivity of the results to the priors, we
re-estimated the model using a different set of priors. The
new set of priors was designed to assign density only to the
space of (what we perceived to be) plausible parameter val-

ues. They are taken as:

by ~ N(-2.94,0.3)
b ~ N(0,0.3)
b, ~ N(0,0.3)
¢ ~ U(0,700)
s ~ UO,1)

o7~ U(1,100).

Parameter estimates and standard errors under the new
set of priors nearly all agreed with those under the old pri-
ors to two decimal places. The only exception to this was
the ¢, parameter, which was estimated to be 258.7 (pos-
terior SD=44.4) under the old priors and 259.7 (posterior
SD=43.5) under the new priors. The agreement in parameter
estimates implies that the data dominate the priors. There
was a change in the Bayes factors testing the hypothesis
tyw = 1 in each condition; the more-informative priors gen-
erally shifted evidence away from the hypothesis. Under
the original priors, logarithms of Bayes factors® were 3.19,
-9.21, and -5.11 for the control condition, CI condition, and
EI condition, respectively. These logarithms are compared
to zero instead of to one, where positive numbers favor the
hypothesis that y,, = 1. As a result, we favored u,, = 1 in the
control condition but not in the two other conditions. Under
the new priors, the logarithms of Bayes factors are 0.74, -
16.75, and -7.01. The log-Bayes factor for the control con-
dition still favors w,, = 1 in the control condition, but now
only moderately so. Conversely, the log-Bayes factors for
the other two conditions provide stronger evidence against
uy, = 1. These analyses demonstrate the changes in Bayes
factors that can result from different priors (e.g., Gelman et
al., 2004; Kass & Raftery, 1995; Liu & Aitkin, 2008).

General Discussion

In this article, we have developed a hierarchical model
that allows us to conduct a detailed examination of simple
psychological theories of choice confidence. The hierarchi-
cal model’s use of the beta distribution makes it suitable for
probabilistic confidence judgments, and the mean/precision
parameterization of the distribution makes it useful for im-
plementing psychological theories within the model. The
modeling results show that, when allowing for individual
differences and fitting to trial-by-trial data, the confirmation
bias and error theories of confidence are incomplete. The
results highlight areas where both psychological theory and
modeling require further development. We address these ar-
eas below. Finally, we provide some general comments on
the utility of the hierarchical modeling framework developed
here and on the tools used to examine the model’s correspon-
dence with the data.

¢ Logarithms of Bayes factors are presented here due to small
observed values.
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Theory Improvement

In the financial knowledge data presented here and in
other probability elicitation experiments we have conducted,
there were a large proportion of judgments at the scale
bounds. In averaging each subject’s data, however, one ob-
tains many numbers near the middle of the scale. Because
many psychological theories of confidence elicitation have
focused on averaged data, the theories generally neglect the
overuse of scale bounds and other “nice” numbers. It is likely
the case that these judgments are a mixture of substantive
judgments, where the judge assesses confidence, and non-
substantive judgments, where the judge does not assess con-
fidence and simply reports a familiar number. Fischhoff and
Bruine de Bruin (1999) observed this type of phenomenon
in the overuse of 50% probability judgments, where subjects
sometimes use 50% not as a probability but as a category
conveying that they do not know what number to report. The
researchers were able to reduce 50% judgments by giving
subjects the option of reporting “absolutely no idea” instead
of a probability.’

One psychological theory that potentially addresses these
issues is fuzzy-trace theory (e.g., Reyna & Brainerd, 1995),
which specifies that judges rely on the “least precise level
of representation that can be used to accomplish a judg-
ment” (Reyna & Adam, 2003, p. 326). As applied to prob-
abilistic confidence, subjects’ least precise level of repre-
sentation may entail three categories: uncertain, somewhat
certain, and certain. The uncertain and certain categories
would then map to the scale bounds, and the somewhat cer-
tain category would map to numbers between the bounds.
While Bouwmeester and Verkoeijen (2010) formally exam-
ined some predictions of fuzzy-trace theory in the context of
recognition memory, the theory has not been fully formalized
mathematically. Thus, there remains some ambiguity con-
cerning its specific predictions in the context of probability
judgments.

Modeling Improvement

The theory improvement described above can be aug-
mented with related model improvements. Model improve-
ments may include: (1) implementation of a two-component
mixture model; (2) implementation of other explanations of
the relationship between calibrated confidence (p;;) and re-
ported confidence (c;;), and (3) allowing the p;; to vary across
subjects.

Modification (1) could be used to account for non-
substantive judgments at the scale bounds separately from
substantive judgments. The estimated beta distributions in
this paper were U-shaped, being highly impacted by the
masses of judgments at the two bounds. In implementing
a two-component mixture model, we might obtain one U-
shaped component for overuse of the scale-bounds and one
unimodal component for the other judgments. The advantage
of this would be the ease by which the unimodal component
could be interpreted. For details on mixture approaches to
beta models, see Smithson, Merkle, and Verkuilen (in press).

Modification (2) is most applicable to the psychological
theory described previously: there are many ways by which
¢;j can be obtained from p;;. It may be most beneficial to treat
pij as a latent variable and to implement a multivariate model
of confidence and accuracy. In this framework, accuracy data
would lead to estimates of the latent p;;, which may then
be mapped into ¢;; via many possible transformations (see,
e.g., McKenzie et al., 2001). Fuzzy-trace theory may also be
implemented in this framework, roughly stating that subjects
first represent the latent p;; as ordered categories and the map
the ordered categories to probabilities. This appears to offer
one method of obtaining probabilistic confidence judgments
from existing models of ordinal judgments (e.g., Lee & Dry,
2006; Ratcliff & Starns, 2009; Van Zandt, 2000; Vickers,
1979): assume three ordered categories in the models, map
the end categories to the respective bounds of the probability
scale, and map the middle category to a distribution in the
middle of the probability scale.

Finally, modification (3) addresses the p;; varying across
subjects. The key here involves specification of an accuracy
model that leads to predictions for the p;;. Some principled
models for the p;; stem from item response theory, where the
pij would differ depending on the subjects’ ability (a simi-
lar idea was described by Budescu & Johnson, 1997). As
an initial examination of this, we fit a Rasch model to sub-
jects’ accuracy data and used empirical Bayes estimates of
the ability parameters to predict the probability (p: j) that each
judge answers each item correctly. We then refit the hierar-
chical model described in the paper, using the p;*j instead of
pij = p;- While the Rasch model indicated variability in the
subjects’ abilities, the results of the hierarchical beta model
with the p} y did not differ greatly from those of the original
model. In particular, the experimental conditions had simi-
lar effects on the w;, and the model still underpredicted the
density of some judgments in the middle of the confidence
scale. Thus, it appears that subject-specific p;; alone will not
improve the model.

Conclusion

Though the specific model used in this paper was unable
to account for all aspects of the data, the hierarchical beta
framework developed here is generally useful for decision
experiments involving probabilistic confidence. One can in-
sert general equations for y;; in the model, resulting in a wide
variety of theories that may be examined in the framework.
Further, as described above, the framework can readily ac-
commodate extensions to multivariate models and to subject-
specific p;;.

In addition to the model, the diagnostic tools used here
to examine the model’s correspondence with the data can

" Fischhoff and Bruine de Bruin’s tasks required subjects to esti-
mate low-probability events, such as being burglarized during a sin-
gle year. Thus, unlike the financial knowledge task described in this
paper, “50%” in their tasks is unlikely to convey a reasonable prob-
ability judgment (unless the subject lives in an exceedingly rough
neighborhood).
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generally be employed in psychological modeling. These
include the use of posterior predictive distributions, simula-
tion of data from estimated models, and Bayes factors. The
tools emphasize examination of many aspects of the data and
model predictions, including distributions for specific judges
and items, distributions for experimental conditions, effects
of experimental conditions, and correspondence between es-
timated parameters and empirical data. The tools collectively
aid the researcher in developing a thorough understanding of
the model and its ability to capture the phenomena of interest,
leading to improved models and advances in psychological
theory.
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Appendix
Bugs Code
The code below fits the hierarchical beta model from the

application, which includes effects of experimental condi-
tions. It assumes three pieces of data: N, a scalar reflect-
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ing the number of subjects; k, a scalar reflecting the number err.phi[i] ~ dnorm(®, inv.sigsq.phi)
of items; and y, an Nxk matrix of transformed confidence
judgments (transformed to lie in (0, 1)) with rows reflecting # Hierarchical beta distribution for w
subjects and columns reflecting items. w[i] <- 20*wtrans[i]
wtrans[i] ~ dbeta(alpha.w[i], beta.w[i])
model # Transform the beta distribution parameters
{ alpha.w[i] <- mu.w[i] * phi.w
for (i in 1:M){ beta.w[i] <- phi.w - mu.w[i]*phi.w
for (j in 1:k){ # Modeling effects of experimental conditions on mu
# Specify confidence arising from a beta logit(mu.w[i]) <- b®.w + bl.w*ci[i] + b2.w*ei[i]
y[i,j] = dbeta(alphali,j], betali,jl) 1
# Transform alpha and beta to mu and phi # Priors:
alpha[i,j] <- mu[i,j]*phi[i] b0 ~ dnorm(®, 1.0E-6)
betali,j] <- phi[i] - mu[i,j]l*phi[i] phi.w ~ dunif(0,2000)
b®.w ~ dnorm(®, .35)
# Model for mean confidence bl.w ~ dnorm(®, .35)

cli,j] <- pow(p[j],wlil)/(pow(p[j],wlil) + powl+p [ kmtkddd®, .35)
# Transform c[i,j] so its bounds match that ofifheResa phi - dgamma(.001, .001)
muli,j] <- (c[i,j] - 0.5)/0.5 }

}

# Hierarchical model for error term

log(phi[i]) <- b® + err.phi[i]



