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Abstract

Forecasters are typically evaluated via proper scoring rules such as the Brier
score. These scoring rules use only the reported forecasts for assessment, ne-
glecting related variables such as the specific questions that a person chose
to forecast. In this paper, we study whether information related to question
selection influences our estimates of forecaster ability. In other words, do
good forecasters tend to select questions in a different way from bad fore-
casters? If so, can we capitalize on these selections in estimating forecaster
ability? To address these questions, we extend a recently-developed psycho-
metric model of forecasts to include question selection data. We compare
the extended psychometric model to a simpler model, studying its unidimen-
sionality assumption and highlighting the unique information it can provide.
We find that the model can make use of the fact that good forecasters select
more questions than bad forecasters, and we conclude that question selec-
tion data can be beneficial above and beyond reported forecasts. As a side
benefit, the resulting model can potentially provide unique incentives for
forecaster participation.

In many areas of forecasting, question selection is an issue of considerable importance.
Does a forecaster look good because he/she chose to forecast only easy questions? Should
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we reward a forecaster for attempting difficult questions, even if her forecasts on those
questions are poor? Is forecasting ability related to question choice; that is, are good
forecasters better able to select questions on which they will excel? These questions cannot
be answered via classical metrics such as proper scoring rules (e.g., Gneiting & Raftery,
2007), which generally assume that all forecasters have reported on all questions.

Instead of proper scoring rules, model-based approaches to forecast evaluation make
it feasible to study issues related to question selection. A prime candidate is a recently-
proposed psychometric model of probabilistic forecasts (Merkle, Steyvers, Mellers, & Tet-
lock, 2016), which is related to previously-proposed item response models for doubly-
bounded variables (Bejar, 1977; Ferrando, 2001; Miiller, 1987; B. Muthén, 1989; Noel
& Dauvier, 2007; Samejima, 1973). This model simultaneously provides estimates of fore-
caster ability and of question difficulty and discrimination. For example, if a particular
question has ambiguous wording, then good forecasters’ judgments may be indiscernable
from bad forecasters’ judgments. The model can recognize this, discounting forecasters’
judgments on ambiguous questions as we estimate the forecasters’ general abilities across
questions. Conversely, certain questions may be particularly suitable for discriminating be-
tween forecasters of different abilities. Forecaster judgments on these good questions would
then be weighted more heavily, as compared to judgments on other questions.

In addition to addressing novel substantive issues, model-based forecaster assessment
allows us to make explicit our assumptions related to missing forecasts. That is, by exclud-
ing (or including) question selection data from a model, we implicitly make assumptions
about why forecasters do not respond to some questions. For example, the missing com-
pletely at random (MCAR; e.g., Little & Rubin, 2002) assumption says that missingness
is independent of the data (both observed and unobserved). This assumption, which is
unlikely to be fulfilled in practice, generally implies that we can ignore missing data.

The Merkle et al. (2016) models instead employed the missing at random assumption,
whereby all observed forecasts (even those from forecasters with incomplete data) are used
for model estimation. The MAR assumption states that the probability of missingness can
be predicted exclusively from the observed data; if we could observe the missing data, our
predictions would not improve. This assumption excludes the possibility that forecasters
of greater/lesser ability differ in frequency of responding or in the types of questions that
they choose. When forecaster ability is related to question selection, then models employing
the MAR assumption may lead to suboptimal substantive conclusions regarding forecaster
ability or question attributes.

To study question selection issues in this paper, we develop a psychometric model of
forecasts that jointly accommodates question selections and reported forecasts. This model
draws from the psychometric literature on explicitly modeling (as opposed to ignoring)
missing data (e.g., Chang, Tsai, & Hsu, 2014; Holman & Glas, 2005; O’Muircheartaigh &
Moustaki, 1999; Rose, von Davier, & Xu, 2010; Wang, Jin, Qiu, & Wang, 2012), which
explores the idea that information can be gained from missing data in standardized test-
ing contexts. Following model development, we apply the model to data from a recent
forecasting tournament. This allows us to study a major model assumption related to uni-
dimensionality of forecasting ability, and it also allows us to compare the proposed model to
a previous model that employs the MAR assumption. We additionally compare the model-
based estimates to other forecaster ability estimates that are based on the Brier score and
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illustrate the general use of question selection data in forecaster assessment.

In the pages below, we first provide technical detail on the models, starting with
previous developments and continuing with novel developments. Next, we apply the model
to data from a recent forecasting tournament. The application includes an examination of
model assumptions, a small example that provides readers with an intuition of the model’s
estimates, and a larger example involving the full data. Finally, we report on a simulation
that further illustrates the benefits of modeling question selection data.

Models

Assume that I forecasters each respond to some subset of J questions, with each fore-
caster’s subset possibly being unique. Let y;; be forecaster i’s probit-transformed forecast
for the realized outcome of question j (with the possibility that it is missing), and let d;; be
a 0/1 variable indicating whether or not y;; is missing (0 for missing, 1 otherwise). We first
briefly review the MAR model proposed by Merkle et al. (2016), and we then introduce a
new model that handles the d;; in addition to the y;.

MAR Model

The models described by Merkle et al. (2016) focused on the observed y;;, providing
estimates of forecasters’ abilities and questions’ difficulties and discriminations. Because
the model focuses exclusively on the observed y;, it employs the MAR assumption.

Most of the concepts underlying the Merkle et al. (2016) model derive from the
classical item response literature (e.g., Embretson & Reise, 2000; Lord & Novick, 1968;
McDonald, 1999), with the application to probabilistic forecasts being relatively novel.
That is, instead of being applied to binary data reflecting whether or not a student correctly
answers a test question (say), the models are applied to probability judgments. The model
can be written as

yijltij, Oair dig = 1 ~ N(pij, 03) (1)
pij = Boj + (B1j — Boj) exp(—PBatij) + Ajba,i (2)
0ai ~ N(0,1), (3)

where t;; is the time at which person i forecasted question j (measured as days until the
question expires), 6,; is person i’s forecasting ability (the a subscript stands for “abil-
ity”), and the ; and \; parameters are related to item j’s difficulty and discrimination,
respectively.

The above model is related to a factor analysis model, with extra parameters (the fs)
that allow question difficulty to change over time. This is necessary because forecasters often
report on a question at different points in time, and information relevant to the question
changes over time. For example, imagine two forecasters predicting the chance of rain for
February 1. A forecaster responding on January 31 will have a natural advantage over a
forecaster responding on January 28, because the question is easier on January 31. The
model can account for this issue by allowing difficulty to change over time, based on the
way that the full group of forecasters is responding over time.

Merkle et al. (2016) used Bayesian methods to fit the above model to data from a
forecasting tournament (data from the same source used in this paper, further described
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below) and found that (i) the model could successfully predict out-of-sample forecasts; (ii)
the forecaster ability estimates were more highly related to a forecaster’s future ability, as
compared to the Brier score, and (iii) the item parameter estimates were related to external
covariates in a way that was theoretically expected. In the following section, we extend this
model to handle question selection data, resulting in a model that allows for missing not at
random (MNAR) data.

MNAR Model

The MNAR model allows for the possibility that missing data provide information
about forecaster ability (and about item attributes), over and above the observed data.
It is a generalization of the above model that simultaneously accounts for the missingness
indicators d;; and the reported forecasts y;;. In developing the model, we adopted an
approach similar to that of O’Muircheartaigh and Moustaki (1999) and Holman and Glas
(2005), both of whom studied methods for handling missing data in traditional item response
contexts. For each person 4, we simultaneously model 2 x J variables: the probit-transformed
forecasts for the J items (?/;}a some of which are missing), along with the missingness
indicators for the J items (d;).

The J forecast variables are all modeled in a manner similar to Merkle et al. (2016):

y;(j|tij79a,iadij =1~ N(Mij,g]?) (4)
pig = Boj + Bijtij + Aj1ba,i- (5)

This is a simplification of the Merkle et al. (2016) model, where the “time” covariate has
a linear influence on p;; instead of an exponential curve. This function is simpler than
the exponential function while still allowing for curvilinear influences of time on reported
forecasts (because we are modeling the probit-transformed forecasts, as opposed to the
original forecasts). To identify this part of the model, we fix a single A;; parameter (in
j=1,...,J) to 1.

In addition to the forecast variables, the J missingness indicators are handled via a
two-factor model

dijlea,z’v 9,«’1' ~ Bernoulli(pij) (6)
probit(pij) = Bo,(1+5) + AT+j),10a,i + A g45),20r; (7)

where 0,.; is person i’s response propensity. This equation implies that a person’s forecasting
ability can play a role in both the questions that he/she selects and the forecasts that he/she
reports. There is additionally a response propensity factor that accounts for a person’s
general level of activity in making forecasts. The subscripts above are based on fact that
the missingness variables can be treated as new questions within the model. That is, for
person i, questions 1 to J include the reported forecasts, while questions (J+1) to 2J include
the binary missingness indicators (for completeness, we define the parameters A2 to Aj2
to all equal zero). To identify this part of the model, we fix a single A s, ;)2 parameter
(where jisin 1,...,J) to 1.
Along with the above constraints, parameter identification is completed by assuming
that
0; = (04 6,;) ~ N(0,Dy), (8)
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Figure 1. Path diagram of the proposed model. For simplicity, the time covariate ¢;; is
excluded.
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where Dy, is a diagonal covariance matrix with unique entries ¢); and 2. The assumption of
diagonality here can potentially be relaxed, though we would require parameter constraints
elsewhere in the model to trade off with this relaxation. In preliminary testing, we found that
the model without diagonality was slow to converge, so we did not pursue it further in this
paper. Holman and Glas (2005) show that parameter estimates under the above constraints
can be linearly transformed to parameter estimates under the alternative constraints (with
the diagonality assumption relaxed), implying that the parameter estimates under the two
approaches are related to one another.

Estimation

The model can be represented as a path diagram, illustrated in Figure 1. Each
forecaster potentially contributes 2J observed variables: forecasts for the J questions, along
with selection indicators for the J questions. These observed variables are shown in the
boxes labeled forecast; to forecast; and select; to select;. The former consist of probit-
transformed forecasts, with each forecast variable being observed only if the corresponding
select variable equals 1. For example, a forecaster only supplies forecast if select; equals 1.

The path diagram further shows the two latent variables labeled “forecast ability”
and “response propensity,” with “forecast ability” influencing both the reported forecasts
and question selections. In terms of notation, the A parameters represent the paths from the
latent variables to the observed variables, the 6 parameters represent the latent variables,
and the § parameters (corresponding to the time covariate) are excluded for simplicitly (we
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would have unique § parameters for each observed variable, cluttering the diagram).

To incorporate the time covariate in the model and to easily obtain 6 estimates, we
rely on Bayesian methods of model estimation. We specifically employ Markov chain Monte
Carlo (MCMC) methods, adopting an approach that is similar to existing MCMC methods
for estimating psychometric models (e.g., Ghosh & Dunson, 2009). We used the following
prior distributions on classes of model parameters (subscripts are absent because the same
prior was used on each free parameter):

Bo ~ N(0,2) (9)
B ~N(0,2) (10)
A~ N(0,1) (11)
¥ ~ Gamma~1(.01,.01) (12)
0% ~ Gamma (.01, .01), (13)

where the second parameter of each normal distribution is a variance, as opposed to a
precision.

These priors were intended to place high density in sensible parameter ranges, which
can improve model convergence and sampling efficiency. The parameter ranges are sensible
because the model parameters are generally used to make predictions on the probit scale,
meaning that the predictions are akin to z-scores. Thus, we would be surprised to observe
values of 3y or (1 drastically outside of (—2,2) because these values would correspond to
extreme probabilities near .025 and .975, respectively. We would also be surprised to observe
values of A much larger than 1, given the diverse questions in our dataset (further discussion
below). Finally, the priors on ) and ¢? are traditional, noninformative priors on variance
parameters.

Unless otherwise mentioned, we burned in the models for three chains of 2,000 it-
erations each, then sampled parameters for an additional 2,000 iterations each. Chain
convergence was fast and was monitored using time series plots and the Gelman-Rubin
potential scale reduction statistic (Gelman & Rubin, 1992).

Parameter Interpretation

The model parameters supply many pieces of information about relationships between
forecasting problems, forecaster abilities, and forecaster selection. In particular, the model
allows us to address the following questions (relevant parameters in parentheses):

o Which questions are more popular than others? (8o j+1 to Bo.27)

o Who are the frequent/infrequent responders? (,;)

« Do good forecasters tend to select/avoid certain questions? (Ajy1,1 to Aay1)

» Do frequent forecasters tend to select/avoid certain questions? (Aji12 to Az J,Q)

The first two issues are easily addressed by examining the raw data (i.e., response propor-
tions), but the last two issues are more difficult to address via simple, data-based metrics.
This is an advantage of the model-based approach described here.
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Along with the above topics, the new model can address the same issues that the
Merkle et al. (2016) model addressed. These include:

o Which questions are easier/harder than others? (81 to 5o, 7)
o Who are the better/worse forecasters? (6,;)

o Are some questions better than others for discriminating between forecasters of vary-
ing abilities? (A1 to A1)

In the applications below, we will focus on the 0,; parameters, examining how estimated
forecaster abilities change from the MAR model to the MNAR model. While we eventually
fit the model to a large dataset, we initially fit the model to data from only 4 questions
because it is easier to illustrate the model’s behavior. First, however, we describe the data
source and study the extent to which model assumptions are fulfilled.

Application: Geopolitical Forecasting

The forecasts used in this paper arise from a four-year geopolitical forecasting tour-
nament sponsored by IARPA. The tournament involved five research teams, each of which
was required to forecast hundreds of diverse questions related to world events. Example
questions include

o Will Australia formally transfer uranium to India by 1 June 20127

o Will Mario Monti resign, lose re-election/confidence vote, or vacate the office of Prime
Minister of Italy before 1 January 20137

o Will there be a significant outbreak of H5N1 in China in 20127

o Will the Yuan to Dollar exchange rate on 31 December 2012 be more than 5% different
than the 31 August 2012 exchange rate?

For each question, the research teams elicited forecasts from large groups of individuals.
The teams then aggregated the forecasts via statistical methods and reported them to the
funder on a daily basis.

We focus here on assessing individual forecasters who were part of the winning team in
the tournament (the Good Judgment Project). This team collected forecasts from thousands
of individuals, each of whom was active for at least one of the four tournament years. We
first provide some background detail on the dataset (also see Mellers et al., 2014; Mellers,
Stone, Atanasov, et al., 2015; Mellers, Stone, Murray, et al., 2015), and we then discuss
issues of dimensionality related to the dataset. The dimensionality issues are important
because the proposed model makes specific assumptions here.

Data

Adult forecasters of all ages were recruited from across the United States via email
lists, professional societies, university organizations, and social media. The forecasters
voluntarily logged on to a website and selected questions that they wished to forecast.
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Forecasters were motivated to participate in various manners, including monetary payment
for participation and leaderboards of the best forecasters.

For each question, forecasters read the question details and reported a probability of
event occurrence (from 0 to 1 inclusive; forecasts of exactly 0 and 1 were transformed to .001
and .999, respectively, for modeling). Forecasters were randomly assigned to experimental
conditions that differed in whether, e.g., the forecasters worked individually (vs on teams)
and the types of training the forecasters received. For the purposes of this paper, we
ignore experimental conditions and model only individuals’ reported forecasts and question
selections. This is facilitated by the fact that even forecasters who worked on teams reported
their own individual forecasts.

Below, we use a data set containing 775 forecasters who each report on a subset of
157 binary (event occurs/does not occur) questions. To speed model estimation, forecasters
were initially included if they responded to 70 or more questions; we later apply the model
to forecasters with sparser data. While the forecasters were free to respond to the same
question multiple times (i.e., to update their forecasts), we maintained only the first forecast
supplied on a given question for simplicity.

Unidimensionality

The model studied in this paper assumes a single “forecaster ability” dimension and
a single “response propensity” dimension, with the reported forecasts being influenced only
by the “ability” dimension and the question selections being influenced by both dimensions.
The assumption of a single “forecaster ability” dimension is almost certainly violated for the
application considered here, which involves forecasts of diverse world events. For example,
we could imagine a forecaster having expertise on a specific topic like European politics,
so that his/her forecasts are better on questions related to that topic than on questions
unrelated to that topic. The proposed MNAR model would assign this forecaster a single
ability estimate, representing some combination of his/her ability at forecasting European
politics and his/her ability at forecasting other questions. This single estimate will not be
an optimal assessment of the forecaster’s true ability, which requires two dimensions to fully
describe (one for European politics and one for other questions). Likewise, if a forecaster’s
ability improves over time, his/her single model estimate will not reflect this. However, use
of a single model estimate does mimic applied forecaster assessments where the Brier score
is indiscriminately averaged across all available questions (e.g., Carvalho, in press).

Beyond mimicking practical assessments, we can draw on the psychometric literature
to explicitly assess dimensionality. Researchers here have pointed out that, even in the
case of standardized educational tests, strict unidimensionality will not hold in practice
(e.g., Reise, Scheines, Widaman, & Haviland, 2013; Thissen, 2016; Zhang, 2007). Thus,
considerable effort has been devoted to assessing the magnitude of unidimensionality vio-
lation, as opposed to assessing whether or not unidimensionality is violated (e.g., Bonifay,
Reise, Scheines, & Meijer, 2015; Stout et al., 1996; van Abswoude, van der Ark, & Sijtsma,
2004; Zhang, 2007). This effort provides metrics that can tell us whether or not a set of
questions is “unidimensional enough” to be useful. The metrics are nonparametric in na-
ture, because model-based assessments tend to be overly sensitive to minor violations of
unidimensionality.
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One of the most popular metrics resulting from this literature, which we adapt to
forecasting data here, is called DETECT (Zhang & Stout, 1999; Zhang, 2007). This met-
ric makes use of the fact that, for unidimensional tests, nonzero covariances/correlations
between questions should all be due to the single, underlying ability dimension. Thus,
partial covariances/correlations between questions (conditioning on the single underlying
dimension) should all equal zero. While this is the idea underlying DETECT, the spe-
cific algorithm is more complex than simple covariance calculation. Further computational
details are provided in Appendix A.

The DETECT index is useful for our purposes because previous researchers have
provided rules of thumb for its interpretation. Roussos and Ozbeck (2006) state that values
below 0.2 are often taken to represent approximate unidimensionality, whereas values greater
than 1.0 are taken to represent strong multidimensionality. As we move from 0.2 to 1.0,
multidimensionality increases in strength. Thus, for the unidimensionality assumption to
be useful, we should look for D values below 1.0, with values closer to 0 being better.

We computed this statistic separately for the reported forecasts y and for the question
selections d. For the question selections, the DETECT index indicated strong multidimen-
sionality, achieving a maximum value of 2.3 at 2 clusters (subgroups) of questions. The
subgroups detected here had a strong temporal component: when we re-computed the in-
dex using only data from a single year, the maximum DETECT value was 0.58 (indicating
moderate multidimensionality). For the reported forecasts, we obtained a maximum DE-
TECT statistic of 0.72 at 3 subgroups.

These results provide some evidence that, for this particular dataset, multidimen-
sionality is moderate and results from changes in the forecasters over time, as opposed to
forecasters having specific expertise or interest in particular question topics. To address
these findings, we later fit the model to subsets of the data arising from only a single year
of the tournament and compare it to a model fitted to the full dataset.

Simple Example

For an initial example of the proposed model’s behavior, we use data from only four
questions. The four questions used here (with identification numbers in parentheses) were
all open during 2012-2013; they are:

o Will Traian Basescu resign, lose referendum vote, or vacate the office of President of
Romania before 1 April 20127 (1067)

e Will Kim Jong-un resign or otherwise vacate the office of Supreme Leader of North
Korea before 1 April 20137 (1106)

e Before 1 April 2013, will the Egyptian government officially announce it has started
construction of a nuclear power plant at Dabaa? (1147)

o Will Mohammed Morsi cease to be President of Egypt before 1 April 20137 (1177)

In the tournament, 771 of the 775 forecasters in our dataset responded to at least one of
the four questions. We use all data supplied from these 771 forecasters, including missing
observations. Below, we further describe the questions and the model before examining the
results.
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Table 1
Brier scores and response rates of four questions.
Question Mean Brier Response Rate

1067 .08 .87
1106 .01 77
1147 .09 .59
1177 .07 .59

Table 2

Simple example, response pattern frequencies and mean Brier scores. The four numbers
in the “Response pattern” column correspond to questions 1067, 1106, 1147, and 1177,
respectively, equaling 0 for question nonresponse and 1 otherwise.

Response pattern Frequency Mean Brier

0001 1 0.022
0010 1 0.000
0011 1 0.006
0100 15 0.053
0101 11 0.063
0110 8 0.027
0111 64 0.056
1000 173 0.102
1010 1 0.061
1100 87 0.043
1101 31 0.052
1110 34 0.066
1111 345 0.060

Data Summary. The questions’ mean Brier scores and response rates (out of the
number of people who responded to any of the four questions) are displayed in Table 1;
scatterplots and distributions of reported forecasts are displayed in Figure 2; and response
pattern frequencies and mean Brier scores are displayed in Table 2. Questions 1067 and 1147
had the worst Brier scores, and questions 1147 and 1177 were less popular than the other
two. Figure 2 (most notably, the panels for question 1067) also shows that there is some
overuse of “nice” numbers like .5, which indicates that, e.g., some participants might be
reporting .5 to reflect complete uncertainty, as opposed to a probability of event occurrence.
Our model does not account for this phenomenon, and it is unclear whether accounting for
it is worth the additional model complexity that would be required.

Finally, Table 2 shows that 345 forecasters responded to all four questions, with 173
forecasters responding only to the first question (1067). The people responding only to
question 1067 appear to be worse than other forecasters in terms of the Brier score, though
this result is clouded by differences in question difficulty and in response pattern frequencies.
The estimated model, described below, can help to provide a clearer assessment of these
issues.
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Figure 2. Simple example, visual summaries of forecasts for each question’s realized out-
come. The upper triangle displays Pearson correlations associated with the scatterplots in
the lower triangle.
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Results. In examining the estimated IRT model of forecasts and question selections,
several results are notable. We start with the A\ parameters that describe the influence of
forecaster ability on reported forecasts and on question selection. We then move to the
forecaster ability estimates.

The A parameters that related to question discrimination (A; 1 to A1) were all close
to 1, which (unsurprisingly) means that better forecasters tended to do better on all four
questions. Perhaps more surprisingly, better forecasters were more likely to select certain
questions (as judged by As1 to Ag1). This was particularly the case for the two questions
with lower response rates and worse Brier scores, 1147 and 1177. Question 1106 showed
a smaller influence of forecaster ability on question selection, while question 1067 showed
virtually no influence.

Figure 3 compares the ability estimates from the Merkle et al. (2016) MAR model
(x-axis; note that this model included a linear effect of time similar to Equation (5)) to
the new model of forecasts and question selection (y-axis). Each point represents a single

11
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Figure 8. Simple example, comparison of MAR ability estimates to MNAR ability estimates
that incorporate question selection. The Spearman correlation appears in the upper left.
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forecaster, with the point’s color and shape representing the total number of questions
answered (out of 4 possible). We can roughly see three diagonal lines going from bottom
left to top right: one line of red circles and green triangles, one line of blue squares, and
one line of purple plusses. The red circles and green triangles tend to be closest to the
top, which means that the forecasters who answered 3 or 4 questions generally received the
highest ability estimates under the MNAR model, followed by the forecasters who answered
2 questions, followed by forecasters who only answered 1 question. The MNAR model
has automatically penalized non-responders, because the non-responders tended to supply
worse forecasts than the frequent responders.

The figure also includes a small number of forecasters who stand out; one such fore-
caster is circled in the middle of the plot. The circled forecaster answered only one question
(a purple plus) yet, under the new model, obtained a higher ability estimate than similar
people who responded to all four questions. This is a person who responded only to the
question that was most highly associated with forecaster ability (question 1147). This is
also a very uncommon response pattern: this is the only person who responded to question
1147 and no others. The person additionally made a near-perfect forecast of .99 in favor of
the realized outcome on that question. Thus, the model has rewarded the person for mak-
ing a good forecast on the question that was most associated with good forecasting. This
reward is relative to the person’s MAR ability estimate; that is, the person’s new ability
estimate is still in the middle of the pack, as compared to the full set of forecasters. In
order to obtain the highest ability estimate, a forecaster must report exceptional forecasts
on most or all of the questions. This is because the shrinkage of each forecaster’s ability
estimate is related to the amount of data available on a forecaster: as a forecaster responds
to more questions, his/her ability estimate can become more extreme.

Figure 4 further compares the new model’s ability estimates to two types of Brier
scores: a mean observed Brier score, and a mean imputed Brier score. These reflect heuristic
methods for handling missing data while still using a proper scoring rule. For each forecaster,
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Figure /. Mean observed Brier score (x-axis, left panel) and mean imputed Brier score
(x-axis, right panel) versus MNAR ability estimates.
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the mean observed Brier score averages Brier scores only across the questions to which the
forecaster responded (similar to, e.g., treating missing forecasts as “not reached”). The
mean imputed Brier score, on the other hand, fills in the missing observations; these missing
observations receive the corresponding question’s mean Brier score based on the observed
forecasts for that question (similar to, e.g., treating missing forecasts as “incorrect”).

In Figure 4, the x-axis reflects the Brier scores and the y-axis reflects the model
estimates. For reference, the red circles in both figures are located in exactly the same
places; Brier score imputing has no impact on people who forecasted all four questions.
The figure shows that the ability estimates from the model are generally related to the
Brier scores, with correlations in the —.6 to —.7 range. Comparing the two panels with one
another, we see that the Brier score imputing helped many people with bad Brier scores. In
the left panel, these people are generally closer to the right side of the x-axis with points that
are triangles, squares, or plusses. In the right panel, these people have all moved further
left on the x-axis (improved) while the people who responded to all four questions stayed
in the same location. Perhaps the most striking result of this figure involves the fact that
we observe multiple vertical “lines” of points. This shows that the model assigns different
ability estimates to people who receive nearly the same Brier scores. The specific questions
that were selected, along with time that the forecasts were reported, are responsible for
these differences.

Full Data

Now that we have illustrated the model’s application to a small number of questions,
we fit the model to the larger data set of 775 forecasters responding to 157 questions (again
maintaining only the first forecast reported by each person on each question). We focus
on comparing the MNAR model to the Merkle et al. (2016) model that does not handle
question selection. This comparison provides information about the impact of the “missing

13
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Figure 5. Comparison of MAR ability estimates versus MNAR ability estimates obtained
from data across all four years of the tournament. The Spearman correlation appears in
the top left.
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at random” assumption on model estimates.

A comparison of the Merkle et al. (2016) ability estimates (missing at random) and
the new ability estimates (missing not at random) is displayed in Figure 5. Points are now
displayed in various shades of blue based on response rate; blue points represent forecasters
who responded to nearly all the questions, while black points represent forecasters who
responded to fewer questions. The figure clearly shows that response rate influences ability
estimates in the new model: forecasters who received similar ability estimates under the old
model can now receive very different estimates from the new model. The extent to which
the new ability estimates change is dependent on response rate: light blue points are always
closest to the top of the graph, and darker points are further below. Just like the simple
example, the extent to which the darker points are penalized is dependent on the specific
questions to which forecasters responded: if a “low response rate” forecaster responded
to many questions that good forecasters selected, then that forecaster is not penalized as
much. If the “low response rate” forecaster responded in other ways, then his/her penalty
is larger.

Figure 6 displays a histogram of A estimates corresponding to paths from “Forecaster
ability” to the question selection variables (see Figure 1). These estimates provide informa-
tion about whether good forecasters are more/less likely to select certain questions. The
histogram indicates that the chance of responding to each question increases with forecaster
ability, regardless of that question’s difficulty. This result has at least two further implica-
tions. First, there is a deviation from the MAR assumption, because the MAR model is
obtained when all these A parameters equal zero. Second, a forecaster can improve his/her
ability in two ways: by reporting good forecasts and by responding to many questions. This
provides an incentive that is especially useful to forecast consumers: the model developed
here can incentivize forecasters to increase response rates. We return to this issue in the
General Discussion.
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Figure 6. Histogram of A estimates corresponding to paths from the “forecaster ability”
latent variable to “question selection” variables.

Table 3

count

15-

0 1 2 3
Lambda

Notable questions illuminated by the model estimates.

Questions related to
high ability

Question text

1174 Will the Turkish government release imprisoned Kurdish rebel

leader Abdullah Ocalan before 1 April 20137
1177 Will Mohammed Morsi cease to be President of Egypt before 1 April 20137
1183 Will the United Nations Security Council pass a new resolution

directly concerning Iran between 17 December 2012 and 31 March 20137

Questions unrelated to

ability Question text

1004 Will the United Nations General Assembly recognize a Palestinian
state by 30 September 20117

1010 Will the 30 Sept 2011 "last" PPB for Nov 2011 Brent Crude oil
futures* exceed $115?

1022 Will the South African government grant the Dalai Lama a visa

before 7 October 20117
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Finally, the histogram in Figure 6 indicates question variability: some estimates are
close to zero, indicating that forecaster ability is nearly unrelated to the selection of certain
questions, whereas other estimates are far from zero. Table 3 shows some specific questions
that fell at each extreme. The bottom section contains questions whose A estimates were
near zero, indicating that their selection was “unrelated to ability.” These questions were
all open near the start of the tournament, when people were first getting accustomed to
forecasting. Some of these people became good forecasters and some dropped out, likely
explaining the model results. Conversely, the top section contains questions whose selections
were “related to high ability.” These questions were open later in the tournament, and they
comprise less-popular topics that beginning forecasters may have avoided.

Impact of Dropouts

As shown in an earlier section, the multidimensionality in forecasts and question
selections is partially related to the fact that the forecasting tournament was divided into
four separate years. At the end of each year, many existing forecasters dropped out and
many new forecasters entered for the subsequent year. Thus, the results in the previous
section (Figure 5) were influenced by two types of missing data: dropouts who only reported
forecasts during a subset of the tournament, and selective responders who forecasted a subset
of questions across the entire tournament.

The dropouts may influence the model differently from the selective responders. This
is because the best forecasters (the “superforecasters;” see Mellers, Stone, Murray, et al.,
2015) tended to continue reporting forecasts during the entire tournament, and worse fore-
casters were more likely to drop out. The fact that bad forecasters dropped out more often
implies that bad forecasters had more missing data, so that the model learned to penalize
forecasters with low response rates. If we can avoid the bad forecasters who dropped out
after each year, however, then the model may penalize/reward forecasters differently. Thus,
in this section, we fit the model to only Year 1 forecasts, which eliminates year-to-year
dropout effects in our analysis.

Method. We fit the model to 771 forecasters who made at least one forecast during
Year 1. This is a subset of the original data and includes some forecasters with very sparse
data (who reported infrequently during Year 1 and more frequently during subsequent
years). We restricted ourselves to 78 questions that both opened and closed during Year 1.

Results. The left panel of Figure 7 contains the main results, with the MAR ability
estimates on the x-axis and the MNAR ability estimates on the y-axis. The light blue points
form a diagonal line, showing that people who responded to nearly all questions receive
similar ability estimates across models (except for some rescaling). A small number of darker
points cluster around the main diagonal line, showing that some people who responded to
fewer questions received small rewards or penalties depending on their response patterns.
Aside from this, we see a small number of dark points that are farther from the diagonal
line, with many of these points receiving higher ability estimates under the MNAR model.

The dark points above the line represent people who responded to a small number
of questions that tended to be selected by good forecasters. The right panel of Figure 7
contains a closer look at the dark points from the left panel. The right panel contains
forecasters who responded to 10% (seven) of the questions or fewer, so that the shading
reflects response rates that go from 0 to .1 instead of from 0 to 1. It is seen that the



QUESTIONS WE CHOOSE

Figure 7. Comparison of MAR ability estimates to MNAR ability estimates during Year 1
(left panel). The right panel contains a subset of points on the left panel from infrequent
responders.
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nonresponders who received the largest boost generally answered six or seven questions
(close to 10% of the questions). These questions were ones that good forecasters tended to
answer, and the nonresponders generally reported good forecasts on these questions. The
model deemed this sufficient evidence to give the forecasters a boost.

Do these forecasters deserve the boost? To answer this question, we looked at how
the forecasters performed in the full dataset (including data from other years). We focused
on the nine nonresponders in the right panel of Figure 7 whose ability estimates from the
new model were greater than .8. We then re-created Figure 5 in Figure 8, except that the
9 nonresponders are now highlighted in red. It is seen that, when we compare forecasters
on ability across years, the people who originally received a boost now receive a penalty.
This is likely because the nonresponders had larger amounts of missing data across years.
Despite this finding, the nonresponders who originally received a boost during Year 1 all
remain in the top half of forecasters, with seven of nine being above the 90th percentile on
ability. This suggests that the new model can help us identify good forecasters who have
only responded to a small number of questions. We further explore this suggestion in the
next section.

Improvements in Ability Estimates

While the previous sections have illustrated that the new IRT model re-
wards/penalizes (non)response in an intuitive fashion, we ultimately wish to know whether
the resulting ability estimates are better than those of the model that employs the missing
at random assumption. This issue is more complex than it initially appears because it
requires us to explicitly define what we mean by “ability.” For example, imagine that we
estimate forecaster ability via three metrics: the mean Brier score, the MAR model, and
the MNAR model. It is likely that, if we compute each of these metrics in a training sample,
they will be most highly correlated with the analogous metric in a test sample: the training
Brier score will be most correlated with the test Brier score, the training MAR estimates
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Figure 8. Display of the Year 1 infrequent responders in the full dataset (red points), as
compared to other forecasters.

MNAR Ability

MAR Ability

will be most correlated with the test MAR estimates, and the training MNAR estimates
will be most correlated with the test MNAR estimates. In order to say which model is best,
we need to explicitly decide which metric counts as the “official” measure of ability. This
amounts to dealing with the ability metrics’ validities (e.g., Borsboom, Mellenbergh, & van
Heerden, 2004), which is a difficult topic to address in the current context.

We sidestep validity issues here, showing that, if we provide the MNAR model only
with the questions that some forecasters selected (and not with their actual forecasts), then
those forecasters’ ability estimates are related to those that would be obtained if we used
the full data. This implies that there is information to be leveraged from the item selections,
separately from the reported forecasts. This, in turn, illustrates the utility of the proposed
model in practice.

Method. We conducted a simulation study of the MNAR model, using only data
from Year 1 of the forecasting tournament. Similar to the previous section, this was done so
that the model could not capitalize on year-to-year dropout effects. For each of 100 repli-
cations, we randomly selected 25% of the 775 forecasters in the data and deleted all their
forecasts. We maintained the questions that these forecasters selected (i.e., the d;;), how-
ever, fitting the model to these selections along with the full data provided by the remaining
75% of forecasters. Following model estimation (2,000 burn-in samples followed by 2,000
posterior draws), we computed the posterior mean ability estimates of the forecasters whose
forecasts were deleted. Finally, we examined relationships between these ability estimates
and the ability estimates associated with the forecasters’ full data from Years 1 to 4. We
included the data from Years 2 to 4 in our comparison because it served as a more stringent
generalizability measure. That is, because data from Years 2-4 were completely held out
of the initial model estimation, it is more impressive if the resulting ability estimates are
correlated with the estimates that include data from Years 2—4.
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Figure 9. Simulated correlations between ability estimates under two models: a model that
only uses question selections from Year 1, and a model that uses both reported forecasts
and question selections from Years 1-4.
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Results and Discussion. Figure 9 contains a histogram of correlations between
(i) the ability estimates resulting from the Year 1 deleted dataset (where 25% of forecasters
had only question selection data) and (ii) the ability estimates resulting from the model
developed in this paper (utilizing reported forecasts and question selections from all four
years). There are 98 correlations depicted in the histogram, as the model failed to converge
for two of the one-hundred simulation replications. This is likely due to bad, randomly-
generated initial values in these replications.

The histogram shows that the ability estimates from the two models are positively
correlated across all replications, with a mean correlation of 0.24 and an interquartile range
of (0.2,0.28). This result provides evidence that the question selections contain information
that is related to the full ability estimates (that would be obtained if we included reported
forecasts in the model).

The result is weakened by the fact that the question selection data were included in
both models; we might expect a positive correlation between the models’ estimates because
they were partially based on the same data. To explore this criticism, we also examined the
relationship between the “Year 1, question selection” ability estimates and the MAR ability
estimates (based on the model from Merkle et al. (2016)). The latter model utilizes only the
reported forecasts from Years 1-4 (without question selection data), so that the forecasters
with deleted data contribute unique data points to each model. These correlations are
nearly always positive (in 97 of 98 replications), with a mean of 0.12 and an interquartile
range of (0.08,0.16). This mean (and range) is lower than that of the correlations from
Figure 9, potentially illustrating the impact of repeating the data across models. However,
based on the fact that correlations remain positive, we conclude that there exists useful
information in the question selection data. This information may not always lead to major,
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practical improvements in ability estimates, but it is worthwhile to consider in scenarios
where forecasters are free to select their own questions.

Discussion

In this paper, we first developed a psychometric model that allows us to assess fore-
casters’ abilities while simultaneously handling data on question selection. This is poten-
tially useful in situations where forecasters are free to select the questions that they wish
to forecast, so that the selected questions provide information about forecasting ability
above and beyond the forecasts reported on the questions. After model development and
assumption checking, we illustrated the extent to which the proposed model differed from
a previous model that did not account for question selection. Results from the new model
implied that good forecasters tended to select more questions, regardless of question diffi-
culty, and that specific question selections had an influence on forecaster ability estimates.
We also studied the extent to which we can estimate forecaster ability based on question
selections alone (and not forecasts), finding that these ability estimates exhibited correla-
tions of .24 (on average) with the full data ability estimates. This implies that there is
information in the question selections that can be capitalized upon, a result that has also
been studied in other contexts (e.g., Rubin & Steyvers, 2009). In the Discussion, we provide
further ideas on missingness mechanisms, relationships to traditional scoring rules, model
assumptions, and methods of model estimation.

Missingness Mechanisms

One appeal of the proposed MNAR model involves the fact that it handles missingness
in a manner that agrees with intuition: good forecasters select questions differently from
bad forecasters (in the specific context of the current data, good forecasters selected more
questions than bad forecasters), and we should be able to leverage these differences in
forecaster assessment. On the other hand, the statistical literature on missing data (e.g.,
Little & Rubin, 2002) clearly states that (i) there are an infinite number of missingness
mechanisms that qualify as “missing not at random,” and (ii) if the mechanism in the
model does not match the truth, then parameter estimates may exhibit more bias than the
corresponding “missing at random” estimates. The implication is that the extra complexity
of the proposed model may hurt us.

At least for the model proposed in this paper, there appears to be little danger
in employing the MNAR model instead of the MAR model. This is because the MAR
model is a special case of the MNAR model, being obtained by fixing a subset of the A
parameters to zero. Thus, if the MAR assumption is approximately fulfilled, the model
should automatically account for this during estimation.

Relationship to Scoring Rules

The model described here may also be used to develop new types of model-based
scoring rules (see Budescu & Bo, 2015, for related ideas). Existing scoring rules (such as
the Brier score or logarithmic score; see, e.g., Gneiting & Raftery, 2007) work only on the
forecasts themselves, requiring that every forecaster responds to exactly the same questions.
This seldom holds true in practice, and it is awkward to tailor these scoring rules to missing
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data. For example, for each question that a forecaster fails to answer, we might substitute
the mean observed Brier score on the corresponding question. This substitution is related
to IRT procedures that code unanswered questions as incorrect (though, in a forecasting
context, the notion of “incorrect” is unclear).

Beyond substitution of missing observations, we can consider new scoring rules in
which the question selections and missing data play a role. A rough definition, corresponding
to the models estimated in this paper, is as follows. A forecaster receives the highest
expected score if:

o He/she consistently makes better forecasts than the crowd, and
o He/she responds to more questions.

This definition requires the best forecasters to be the best on both question selection and
forecast reporting. Further, middling forecasters could receive the same abilities through
different routes. For example, say that Forecaster A and Forecaster B receive the same
ability estimate from the model. Forecaster A may obtain this estimate through selecting
many questions but providing relatively-bad forecasts on those questions, while Forecaster
B may obtain this estimate through selecting few questions but providing relatively-good
forecasts on those questions. Further work could examine the extent to which these two
criteria simultaneously incentivize honest forecasting and frequent responding. A game-
theoretic framework similar to that of Prelec (2004) may be useful here, because we can
depict each forecaster as striving to do the minimal amount of forecasting required to be
the best. Under these conditions, forecasters might be motivated to respond to all questions
when they do not know other forecasters’ response patterns.

Model Assumptions

As mentioned throughout, the model proposed here assumes a single dimension of
forecaster ability; that each forecaster’s ability can be summarized via a single number.
While the analyses in this paper suggest that this assumption is not grossly violated in
our dataset, there remains the possibility that it is grossly violated in other datasets. At
an extreme, we could imagine a forecaster who only follows local occurrences and knows
nothing about broader world events. If this forecaster only responds to questions related to
her locale, then she may receive a good ability estimate despite the fact that her forecasts
would be awful on other, unanswered questions.

Despite this violation, the model’s handling of this extreme forecaster could still be
reasonable. First, if other forecasters of high ability tend to respond to questions that
do not involve this particular locale, then the model will temper the extreme forecaster’s
ability estimate so that it is not as high as others. Second, if the extreme forecaster does not
respond to many questions (i.e., there are few questions about the forecaster’s locale), then
the model will again temper her ability estimate: the model requires large amounts of data
from the forecaster before it is “willing” to assign an extremely-good ability estimate. While
these results do not guarantee that the model is robust to all dimensionality violations, they
seem applicable to many situations where evaluators wish to rank order forecasters across
all questions.
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Related to the dimensionality issue, the model also assumes that each forecaster has
a static level of forecasting ability and response propensity. In contrast, forecasters tend
to change over time, gaining (losing) interest in the forecasting tournament and reporting
improved (diminished) judgments. As proposed here, the model cannot accommodate fore-
caster attributes that change over time, though it may be possible to directly model changes
in forecaster ability over time via new parameters and/or increased dimensions of forecaster
ability. It would also be of interest to relax distributional assumptions, employing, say,
t distributions instead of normal distributions or mixture models that accommodate sub-
classes of homogeneous forecasters. As further described in the next section, traditional
psychometric modeling frameworks can be helpful for including these model extensions.

Model Estimation

The estimation of traditional item response models with multiple ability dimensions
is generally difficult (e.g., Cai, 2010), and this result holds true for the two-dimensional
model proposed here. The Bayesian approach that we adopted introduces an additional
complication in that we must employ Markov chain Monte Carlo, sampling the forecaster
ability parameters instead of integrating them out (e.g., Lee, 2007). This means that we
must be careful to ensure that the model parameters are identified and that the model
converges (e.g., Ghosh & Dunson, 2009; Merkle & Wang, in press; Peeters, 2012), which
may introduce an undesirable practical complication.

Depending on the data, simplifications are available. In particular, we adopted the
Bayesian approach in this paper so that we could easily include the “time of reported fore-
cast” covariate in the model. This covariate is not necessary, however, when all forecasters
report their judgments at approximately the same time. If this covariate is not necessary,
then the model proposed here can often be estimated via Maximum Likelihood, using pop-
ular SEM software such as Mplus (L. K. Muthén & Muthén, 1998-2012) or lavaan (Rosseel,
2012). These approaches would make use of ideas related to the path diagrams from Fig-
ure 1. When the data are very sparse (i.e., each forecaster reports on a small proportion
of questions), however, these programs may fail in situations where the Bayesian approach
can succeed. This failure is again related to the fact that ML estimation methods integrate
the forecaster latent variables out of the likelihood, whereas Bayesian estimation methods
directly sample the forecaster latent variables (and are “smoothed” by the prior distribu-
tions). Integration of the latent variables requires us to work with the covariance matrix
of a multivariate normal likelihood, which can often become non-positive definite during
model estimation (resulting in failed estimation).

Sample size is an additional consideration for all the models discussed here. Because
the proposed model is related to traditional psychometric models (including factor analysis
and item response models), we can draw on the psychometric literature for sample size
recommendations. In that literature, it is customary to observe hundreds or thousands of
participants reporting on a small number of items. Researchers proposing models similar
to ours have followed this trend: Holman and Glas (2005) applied their model to 171
participants responding to 32 items, whereas O’Muircheartaigh and Moustaki (1999) applied
their model to two datasets, one of which had 2,691 participants responding to five items
and one of which 1,270 participants responding to four items. While our application had
many more items than the others, we generally recommend large numbers of participants
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and suggest artificial data simulation as a way to determine whether one’s particular sample
size is appropriate for estimating parameters of interest. The Bayesian approach of directly
sampling forecaster latent variables can again be helpful here, allowing us to bypass non-
positive definite covariance matrices.

Summary

In situations where respondents are free to select their own questions or stimuli, the
specific selections can provide valuable information about the latent respondent attributes
that we wish to measure. While these selections are often viewed as nuisance characteris-
tics of the data that cause difficulties for analysis, we have illustrated here a model-based
approach to capture the information inherent in the selections. The ability to incorporate
multiple types of variables (forecasts, question selections) in forecaster assessment is a major
advantage of model-based approaches over data-based metrics (i.e., scoring rules), which
rely exclusively on the reported forecasts. In forecasting scenarios and beyond, detailed con-
sideration of selection/missingness mechanisms can lead to improved estimation of latent
traits of interest.

Computational Details

All results were obtained using the R system for statistical computing (R Core Team,
2016) version 3.3.2 and JAGS software for Bayesian computation (Plummer, 2003) version
4.2.0, employing the add-on package runjags 2.0.4-2 (Denwood, in press). R and the package
runjags are freely available under the General Public License 2 from the Comprehensive R
Archive Network at http://CRAN.R-project.org/. JAGS is freely available under the
General Public License 2 from Sourceforge at http://mcmc-jags.sourceforge.net/.
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Appendix A
DETECT technical details
We computed the DETECT statistic separately for the reported forecasts y and for the
question selections d. The statistics were calculated via the expl.detect() function in R
package sirt (Robitzsch, 2016).

Calculation of the DETECT statistic for question selections was straightforward. This
is because all forecasters had complete data corresponding to standard item response data.
That is, each forecaster’s data were composed of a series of Os and 1s, with 0 indicating that
he/she did not respond to a particular question and 1 indicating the opposite. In addition to
the observed data, the DETECT statistic also requires unidimensional estimates of person
ability. For this, we used the weighted likelihood estimates arising from a Rasch model.

To compute a DETECT statistic for the reported forecasts, we first restricted our-
selves to a subset of 241 forecasters who responded to at least 136 of 176 questions (with
most forecasters responding to at least 160 of the questions). We did this so that we could
ignore missing data mechanisms while examining forecast dimensionality. Next, in an at-
tempt to maximize the DETECT statistic, we transformed the data to account for the fact
that forecasts were reported at different points in time. In particular, for each question j,
we regressed the y*s associated with question j on the time at which the forecast was re-
ported (i.e., the t;;). We then used the fitted model to push each person’s reported forecast
to the the question’s “halfway” point (i.e., the time where the question is halfway between
introduction and resolution). Finally, to compute the statistic, we created binary variables
from the aligned forecasts (equal to 0 if the forecast was less than .5, 1 otherwise). For es-
timates of person ability, we used the average forecast reported for each question’s realized
outcome.

Appendix B
JAGS model estimation
JAGS code to estimate the model is displayed below. The probit-transformed forecasts
ystar are in long format, while the missingness indicators d are in a data matrix where rows
are forecasters and columns are questions. Following the JAGS code, we provide R code to
illustrate usage.

model{
for (i in 1:nr){ ## Rows of forecast data
ystar[i] ~ dnorm(mu[i], invsig2[qidx[i]])

mu[i] <- bO[qidx[i]] + bil[qidx[i]]#*nd[i] + lambdal[qidx[i], 1] * thetal[pidx[i], 1]
}

for (i in 1:n){ ## Forecasters
for (j in 1:J){ ## Questions
dli, jl ~ dbern(pdli, j1)

probit(pd[i, jl1) <- bO[(J + j)] + lambdal(J + j), 1] * thetali, 1] +
lambdal[(J + j), 2] * thetali, 2]
}

## Person parameters
thetali, 1] ~ dnorm(0, invpsi[1])
thetal[i, 2] ~ dnorm(0, invpsi[2])
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invpsi[1] ~ dgamma(.01, .01)
invpsi[2] ~ dgamma(.01, .01)

## Equality constraints + priors for question parameters
lambda[1,1] <- 1

lambdal[1,2] <- 0O

lambda[(J+1), 1] ~ dnorm(0, 1)

lambda[(J+1), 2] <- 1

b0o[1] ~ dnorm(0, .5)

bO[(J + 1)] ~ dnorm(0, .5)
b1[1] ~ dnorm(0, .5)
invsig2[1] ~ dgamma(.01, .01)

for (j in 2:J0){
## loadings for forecasts
lambdal[j, 1] ~ dnorm(0, 1)
lambdalj, 2] <- 0

## loadings for d parameters
lambdal[(J + j), 1] ~ dnorm(0, 1)
lambdal[(J + j), 2] ~ dnorm(0, 1)

## Intercept priors
b0[j] ~ dnorm(0, .5)
bO[(J + j)] ~ dnorm(0, .5)
bi[jl ~ dnorm(0, .5)

## Error precision prior
invsig2[j] ~ dgamma(.01, .01)
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The R code below gives an example with artificial data, showing how the JAGS code
can be run from within R using the runjags package.

library("runjags")
set.seed(1080)

## Generate data
n <- 500
K <- 100

## Probability judgments
b0 <- runif(K, -1, 2)
bl <- runif(K, 0, 3)

lambda <- runif(K, -.5, 3.5)
thetal <- rnorm(n, 0, 1)
nd <- runif(n*K, -.5, 0)

dat <- expand.grid(uidx=1:n, ifpidx=1:K)

dat$nd <- nd

mny <- bO[dat$ifpidx] + bil[dat$ifpidx]*nd + lambda[dat$ifpidx]*thetal[dat$uidx]
dat$ystar <- rnorm(n*K, mny, .4)

dat$ystar[dat$ystar < -3.5] <- -3.5

dat$ystar[dat$ystar > 3.5] <- 3.5

dat$ystar[dat$ystar > -.1 & dat$ystar < .1] <- O

dat$fcastl <- pnorm(dat$ystar)

## Missingness indicators

b0 <- runif(X, 0.5, 2)

lambda <- matrix(runif(K*2, -.5, 2.5), K, 2)
theta2 <- rnorm(n, 0, 1)

ppd <- lambdal,1] %*% matrix(thetal, 1, n) + lambdal,2] %*) matrix(theta2, 1, n)
ppd <- apply(ppd, 2, function(x) x + bO)
d <- apply(ppd, 2, function(x) rbinom(length(x), 1, pnorm(x)))
for(i in 1:K){
subs <- which(d[i,] == 0)
dat$ystar[dat$ifpidx == i & dat$uidx %in), subs] <- NA
}

rmrows <- which(is.na(dat$ystar))
dat <- dat[-rmrows,]

## Data formatted for JAGS

data <- list(nr = nrow(dat), n = length(unique(dat$uidx)),
J = length(unique(dat$ifpidx)), ystar = dat$ystar,
qidx = dat$ifpidx, pidx = dat$uidx, nd = dat$nd,
d = t(d)

## Starting values

inits <- 1list(b0 = rep(0, 2*data$J), theta = matrix(0, data$n, 2),
bl = rep(.1, data$J), invsig2 = rep(l, data$]),
invpsi = rep(1, 2))

## MCMC run, will take some time

runjags.options(force.summary = TRUE)

mdraws <- run.jags("paper_model.jag", data=data, inits=inits, monitor=c("theta","b0","b1","lambda"),
n.chains=3, burnin=5000, sample=1000)

## Parameter summaries, posterior means
mdraws$summaries
mdraws$summaries[, "Mean"]



